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We present a detailed review of the Dubois-Violette approach to noncommutative 
differential calculus. The noncommutative differential geometry of matrix 
algebras and the noncommutative Poisson structures are treated in some detail. We 
also present the analog of Maxwell's theory and new models of Yang-Mills-Higgs 
theories that can be constructed in this framework. In particular, some simple 
models are compared with the standard model. Finally, we discuss some 
perspectives and open questions. 

1. INTRODUCTION AND PRELIMINARIES 

Let M be a smooth manifold, A0 = C~(M) the algebra of smooth complex 
functions on M, C~ the algebra of continuous functions on M, E a smooth 
complex vector bundle of finite rank over M, F(E) the space of smooth 
sections of E, V(M) the Lie algebra of complex vector fields over M, Der(A0) 
the Lie algebra of derivations of A0, C* = C(Der(A0); A0) the Chevalley 
complex of cochains of Der(A0) with values in A0, and 12(M) the graded 
differential algebra of differential forms on M. 

In commutative differential geometry, if we consider the algebra A0 as 
an abstract commutative associative C*-algebra, one may really study the 
manifold M using A0. Effectively, everything concerning the geometry and 
topology of a complex smooth differentiable manifold M can be found out 
via investigation of all C-valued smooth functions over M. The choice of 
smooth functions here is not innocent since it avoids losing information about 
the differentiable structure of M, which is the case when we choose the 
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algebra C~ In order to be sufficiently representative, the set Ao = C=(M) 
has to possess some special properties, for instance, if we want to describe 
a Haussdorffian space, the following property must be satisfied: 

Ifxl ~s x2 E M, then there exists at least one functionf E Ao/ f (xO 5~ f(x2). 

This guarantees the separability of the points in M. The set A0 naturally forms 
an algebra: Any two functions fl,  f2 E A0 can be multiplied by multiplying 
their values at the same point x ~ M: 

(fl .fz)(X) = 3el(x)fz(x) 

The same holds for the multiplication by a scalar and for addition. The 
maximal ideals of this algebra can be put into one-to-one correspondence 
with the points of the manifold M. Let 

Ix= { f  E a o / f ( x )  = O , x  ~ M} C a o  

Then, for any g ~ Ao, g . f  ~ Ix i f f  E Ix. This means that Ix is an ideal of 
A0. It is easy to see that Ix is also a maximal ideal of A0 since if we add any 
other element of Ao to it, it ceases to be an ideal. Therefore, any point in M 
determines a maximal ideal in Ao. The inverse is also true (Kobayashi and 
Nomizu, 1963). 

Moreover, A0 possesses many derivations (i.e., the complex vector fields 
over M), contrary to C~ Indeed, if • is a vector field over M, then 

X: Ao ---> Ao 

x(klft  + k2f2) = kj x(f l)  + k2x(f2) (linearity) 

x( f .g )  = x ( f ) . g  + f . x (g )  (Leibnitz rule) 

It is also interesting to note that Der(Ao) is a left Ao-module, i.e., 

If X ~ Der(Ao), then f x  ~ Der(A0), Vf ~ A0 

In this context, F(E) is a finite projective module over Ao and the 
correspondence E ---> F(E) is an equivalence between the category of smooth 
complex vector bundles on M and the category of finite projective A0-modules. 
Similarly, the notion of Hermitian vector bundle generalizes into a notion of 
Hermitian module for a C*-algebra (Connes, 1980). Moveover, the Lie algebra 
V(M) coincides with the Lie algebra Der(A0). 

Therefore, we also know by definition that the Lie algebra Der(Ao) acts 
by derivations on Ao and consequently that the space of all antisymmetric 
multilinear mappings from Der(Ao) into Ao (i.e., the Chevalley complex 
C~) is a graded differential algebra. Then, we observe that the graded differen- 
tial algebra I)(M) of differential forms on M is just the smallest graded 
differential subalgebra ~'~Der(A0) of C~' which contains Ao ---- C~ Ao). 
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Finally, ~'~Der(A0) will serve to define a notion of connection on finite 
projective A0-modules which corresponds to the usual notion of connection 
on vector bundles. Table I summarizes this information, which permits to 
define a commutative differential calculus. 

The fact that the graded differential algebra ~(M) of differential forms 
on M represents the smallest graded differential subalgebra f~Der(A0) of the 
complex C~ = C(Der(A0); A0) which contains A0 led Dubois-Violette (1988, 
1989) to propose a noncommutative generalization of the usual differential 
calculus presented above. 

In noncommutative differential geometry, the role of the C*-algebra A0 
is played by an abstract associative (not necessarily commutative) C*-algebra 
A, as analog of functions on noncommutative spaces (Connes, 1986). 

From this point of view, which originates from quantum mechanics 
(Heisenberg, 1925; Born and Jordan, 1925; Born et al., 1926), where the 
Hamiltonian vector fields are replaced by derivations [i.e., the so-called 
quantum differentiations (Dirac, 1926)], it is natural to consider that the 
noncommutative generalization of the notion of vector field is that of deriva- 
tion and that the analog of the differentiable structure is encoded in the Lie 
algebra of derivations. Moreover, it was realized very earlier that quantum 
mechanics should be described in the context of some noncommutative Pois- 
son structure (Dirac, 1926). 

In order to define connections on A-modules which generalize the notion 
of connections on vector bundles, and consequently to define a noncommuta- 
tive differential calculus, we need to define a noncommutative generalization 
of the graded differential algebra of differential forms. 

Following Connes' procedure, modules of sections of vector bundles 
generalize to finite projective A-modules. But, we remark that, contrary to 
the Lie algebra of vector fields on M, which is an Ao-module, the Lie algebra 

Table I. Correspondence Table 

Usual differential geometry C*-algebraic geometry 

Smooth differentiable manifold: M Commutative associative C*-algebra: 
A 0 = C ~ (M) 

Lie algebra of derivations of A0: Der(Ao) Lie algebra of complex vector fields over 
M: V(M) 

Finite-rank smooth complex vector bundle 
over M: E 

Graded differential algebra of differential 
forms on M: f~(M) 

Connection on E: V: X --~ V• 

Finite projective A0-module: F(E) 

Smallest graded differential sub-algebra of 
the complex Co = C(Der(A0); A0) 
containing A0: f~Der(A0) 

Connection on F(E): 
~': F (E) ---> F (E)|  r (A0) 
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Der(A) of derivations of A is not an A-module in the noncommutative case. 
This will very possibly justify the existence of several noneommutative gener- 
alization procedures in the literature (Dubois-Violette, 1988, 1989; Connes, 
1986; Karoubi, 1983). 

This work is organized as follows. In Section 2, we present a detailed 
and self-consistent review of Dubois-Violette's approach to noncommutative 
differential calculus. In Section 3, we treat the simple case of the algebra 
M.(C) of complex n • n matrices (n -> 2), where we develop various concepts 
of differential geometry on M.(C) using l)Der(Mn(C)) as algebra of differential 
forms. Hence, we introduce the notions of volume element, of integration of 
differential forms, and of closed graded trace, define a canonical invariant 
Riemannian structure [the analogs of a metric for Mn(C) and the corresponding 
scalar product on l)Der(Mn(C))], and describe the corresponding Hodge theory 
on I~D~r(M.(C)). In particular, the algebra M2(C ) of 2 x 2 matrices is described 
in some detail. We also investigate the noncommutative differential geometry 
of the algebra A = C~(M) | M.(C). In Section 4, we present Dubois- 
Violette's noncommutative generalization of the Poisson structures. In Section 
5, we study the symplectic geometry of the algebra M.(C) and show that 
there is a canonical invariant symplectic form t~ �9 I~2~r(M.(C)) for which 
the corresponding generalized Poisson bracket {, } is given by 

i 
{E, F} = ~ [E, F] 

VE, F �9 M,(C). This shows clearly that quantum mechanics is a noncommuta- 
tive symplectic geometry. We also study the cases of the Heisenberg algebra 
Ah and its matrix version. In Section 6, we complete the theoretical Dubois- 
Violette approach by studying the notions of gauge group, connections, and 
their associated curvatures on Hermitian A-modules. This leads us to discuss, 
in Section 7, the new models of gauge theory proposed by Dubois-Violette 
et al. in the context of their approach. Section 8 is devoted to some conclusions 
concerning the general formulation of this approach and its applications, and 
discussions of some problems and open questions. 

An appendix deals with some technical points raised in the discussion 
of Section 5.2 on symplectic structure. Finally, we give a more or less 
complete list of references on the subject. 

2. DUBOIS-VIOLETTE'S APPROACH 

Let A be an associative (not necessarily commutative) C*-algebra with 
unit 1 and a pointwise product "-"  and let Der(A) be the Lie algebra of all 
derivations of A in itself: 

Der(A) = {X e End(A)/x(a.b) = x(a) 'b + a'x(b), Va, b e A} (1) 



Dubois-Violette Noncommutative Differential Geometry 805 

where the Lie bracket is the commutator in End(A). If M is an A-module, 
we add the rule 

l ' x = x  for x ~ M (2) 

to the definition axioms of (left-) modules. 

2.1. The Graded Algebra "r(A) 

Let rn(A) denote the space A | = A | A | . . .  | A (n + 1 factors), 
n E S .  

These spaces are canonically A-bimodules and 

~ ( A )  (~A 'rm(A) = "rn+'n(A) 

It follows that 

"r(A) = G ~(A) (3) 
nEN 

with T~ -- A, is a graded algebra. The associated product p. 

p= 'rn(A) X 'rm(A) ~ 'rn+m(A) 

is defined by 

tz[(ao | "'" | an), (bo | "'" | bm)] = (ao @ "'" @ an)" (bo | "'" | bin) 

where ai, bi ~ A. 
One defines a linear mapping 

by 

= a o @ " ' Q a n - l @  

• (an'bo) | b l | "'" | bm (4) 

d: "r"(A) ---> ~+l(A) 

n+l  

d(ao | al | "'" | an) = ~ ( -1)Pao | "'" | ap-1 | 1 | ap | 
p=0 

X "'" @ a n (5 )  

d is a nilpotent antiderivation of degree one. In addition to this differen- 
tial, one defines boundary mappings/~k,/~, c, and b: rn(A) ---> "#-~(A) with n 
>--- 1 a n d 0 - - < k - - < n -  1, def inedby 

bk(ao | al | "'" | an) = ao | "'" | ak-i  | (ak'ak+l) | ak+2 | 

• " -  | an (6 )  
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n - 1  

/~ = ~] (-1)k/~k (7) 
k=0  

c(ao | al | "'" | an) = ( - 1 ) " ( a . - a o )  | al  | " ' "  Q a._~ (8) 

b = / ~  + c (9) 

respectively./~ is a nilpotent antiderivation of  degree - 1 and one has 

/ ~ o c  + c o / ~  = 0 (10a) 

b 2 = c 2 = 0 (10b) 

One may  also define a derivation of  degree zero. One has 

d o / ~  + / ) o d  = 0 (10c) 

d o b + b o d = d o c + c o d  

such that 

(d o b + b o d)(ao | . . .  | a,,) = ao | " "  | an 

- ( - 1 ) " - l ~ [ d a . ,  ao @ "'" | a . - l ]  

= a o | 1 7 4  

- ( - 1 ) " - J d a . ' ( a o  | "'" | a,,-l) (10d) 

where ~ is defined by equation (4) and dan is given by [see equation (5)] 

da,  = I | a,  - an @ 1 

Finally, one has the fol lowing result. 

Proposition 1. The cohomology  H("r(A)) of  "r(A) is trivial, i.e., H~ 
= C and H"(~(A)) = 0 for  n >- 1. 

Proo f  Let 

be a mapping  defined by 

for all k ~ C. One has 

i: C ---~A 

i(k) = kl  (11) 

d o i = 0 (12) 

so one has a complex  

0 ~ C --~ "r~ --% 71(A) d d d ---~ " "  ----> "r"(A) --~ "r"+l(a) ----) " ' "  (13) 
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with a differential d. Let to E A* be a linear form on A satisfying 

to(l) = 1 (14) 

To prove Proposition 1, one must define a contracting homotopy k,o for 
the above complex. To reach this goal, one defines k,o by 

k,o(C) = 0 (15a) 

ko,(ao | " "  | an) = to(ao)al | az | " "  | an for n > - 0  
(15b) 

Then, ko is a contracting homotopy for the above complex since one has 

d o k t o + k t o o d =  IdTn(a) �9 (16) 

2.2. The Graded Differential Algebra fl(A) 

We will consider the definition of lq(A) as that given in Karoubi (1982, 
1983). Let 

m: A |  A 

be the product on A such that Va, b E A 

m(a | b) = a . b  (17) 

and | is the topological tensor product. One defines an A-bimodule 12~(A) 
[l-ll(A) is a subbimodule of A | A] by 

121(A) = Ker(m) (18) 

and a derivation d of A with values in 121(A) by 

d: A ~ ill(A) 

such that 

d a =  l | 1 7 4  (19) 

Recall that a derivation of A in a A-bimodule M is a linear mapping 

8: A ---~ M 

satisfying 

B(a. b) = ~(a). b + a- ~(b) (20) 

Va, b ~ A. Then, (121(A),d) is characterized by the following universal 
property (Cartan and Eilenberg, 1973; Bourbaki, 1970). 
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Property 1. For each derivation 8 

8: A ---~ M 

of A with values in an A-bimodule M, there exists a unique homomorphism 
(up to an isomorphism) of A-bimodules: 

i~: I'~m(A) ~ M 

such that 

8 = i ~ o d  

This property comes from the fact that f~I(A) is generated as left (or 
right) A-module by dA. 

Let us take 

and 

l~~ = A 

~-~n(A) ~k~'~l(A) ~ A  " ' "  (~A ~'~l(m)/ (21)  

V 
n factors (n >-- 1) 

Then, a graded differential algebra naturally results: 

~G(A) = O f~n(A) (22) 
nEN 

Furthermore, we have the following result. 

Proposition 2. The derivation 

d: A = ~~ -+ ~I(A) 

extends uniquely in a differential of fl(A), i.e., in a nilpotent antiderivation 
of degree one of 12(A) also denoted by d. 

f~n(A) is a submodule of C(A) and one easily verifies that (~(A), d) is 
a graded differential subalgebra of (r(A), d) defined in Section 2.1. 

It follows from Property 1 that O(A) is characterized by the following 
(Connes, 1986; Karoubi, 1982): 

Property 2. Any homomorphism 

~b: A ---~ ~ ~ 

of unital algebras, where (~  = OnEs 0 n, d') is a graded differential algebra, 
lifts uniquely as a homomorphism of graded differential algebras: 

~: (12(a), d) + (1~, d') 
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It is evident from Section 2.1 that 

n--[ 

l'~n(A) = ('~ Ker(/~k) (23) 
k=0 

In particular,/~ is trivial on f~(A) and 

(bf~(a)) C o(a) 

(b o d + d o b)(eL,_t .da) = ot,_l .da - ( -1)" - lda .o t ,_ l  =: [a,-I ,  da] 
(24) 

where a ~ A, da ~ ~)I(A), a,-1 ~ I'Ln-J(A), and a , - i  .da E O"(A). 
We also have the following proposition (Connes, 1986; Karoubi, 1982): 

Proposition 3. The cohomology H(I~(A)) of I~(A) is trivial, i.e., H~ 
= C and H"(~)(A)) = 0 for n -> 0. 

Proof From the proof of Proposition 1, Proposition 3 follows from the 
fact that one has 

k~,(l~"+~(a)) C O"(a) (25) 

for n -> 0, so k,~ is also a contracting homotopy for the subcomplex 
I 

0 -~ C --~ f~~ --~ ~ ' ( a )  --~.- d �9 --4 O"(A) J~ ~)"+~(a) -~ . . .  �9 (26) 

2.3. The Canonical Operat ion  of  Der(A) in I'I(A) 

We obtain the following proposition from the above results. 

Proposition 4. For any • ~ Der(A), the unique homomorphism of 
A-bimodules 

ix: ~l(A) --4 A = I)~ 

such that • = i x o d [where d: A ---) 121(A) is a derivation of A of degree 
+ 1], extends uniquely as an antiderivation of ~(A) also denoted by i x. Define 

L• = i  x o d + d o i  x (27a) 

Then, i x is an antiderivation of degree - 1, L• a derivation of degree 0, and 
we have for any • X2 E Der(A) 

ixl o ix2 - t-  i• ixl = 0 

L• O ix2 - -  i •  Lxl = i[xl,x2 ] 

Lxl o Lx2 - Lx2 0 Lxj = L [ x b x 2 ]  

(27b) 

(27c) 

(27d) 
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In the sense of Cartan (1950) [see also Greub et al. (1976) for the theory 
of operations], it becomes clear that we are in the presence of an operation 
of the Lie algebra Der(A) of derivations of A in the graded differential algebra 
I~(A) of differential forms on A; it is called the canonical operation of Der(A) 
in O(A). 

Notice that, for • ~ Der(A), L x is the restriction to O(A) of the canonical 
extension to "r(A) of • 

2.4. Subalgebras of ~(A) 

In the context of the theory of operations (Cartan, 1950; Greub et al., 
1976) and using the same terminology as in the principal fiber bundle theory, 
one has the following definitions. 

2.4.1. The Horizontal Subalgebra OH(A) 

An element ot of D(A) is called horizontal if 

ix(a ) = 0 (28) 

for all • E Der(A). The set On(A) of all horizontal elements of O(A) is a 
graded subalgebra of D(A) stable by the derivations L• • ~ Der(A). Since 
l'~~ -- A, then On(A) is also a subbimodule of 12(A). 

2.4.2. The Invariant Subalgebra Or(A) 

An element c~ of O(A) is called invariant if 

Lx(ot ) = 0 (29) 

for all • E Der(A). The set I'~(A) of all invariant elements of 12(A) is a 
graded differential subalgebra of D(A). The cohomology of OI(A) is denoted 
by HI(D(A)) and is called the invariant cohomology of O(A). 

2.4.3. The Basic Subalgebra OB(A) 

An element • of D(A) is called basic if it is both horizontal and invariant. 
The set OB(A) of all basic elements of O(A) forms a graded differential 
subalgebra of DI(A) and then also of O(A). The cohomology of Os(A) is 
denoted by HB(O(A)) and is called the basic cohomology of O(A). 

~B(A) is also the set of all c~ ~ D(A) such that ot and dot are horizontal. 
Remark that O1(A) and Os(A) are generally not A-bimodules, but they are 
Az-bimodules, where Az is the invariant subalgebra of A defined by 
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At = {a ~ A / x ( a )  = O, V X ~ Der(A)} = f~~ C A (30) 

As mentioned in Section 1, one goal of this approach is to give a good 
generalization of the notion of differentiable structure, and in this context 
one already expects that 

At = CI (31) 

where 1 is the unit of A. 
Finally, one has the following result. 

Proposition 5. Assume that a linear form to on A exists such that 

to(l) = 1 

and 

t o o x = 0  

for all X ~ Der(A). Then, HI(Iq(A)) is trivial, i.e., H~ = C and 
HT(f~(A)) = 0 for n >- 1. 

io d d 
0 ----> C ---> ~~ --~ I~(A) d ---> "-" --4 127(A ) --% ~7+l(A) ----> "-" (32) 

where i0 denotes the restriction of i: C ---> 12~ to l)t~ �9 

2.5. The Graded Differential Algebra 11Der(A) 

2.5.1. The Complex C* = C(Der(A); A) 

Beating always in mind that the Lie algebra Der(A) of derivations of 
A, which is a generalization of the Lie algebra V(M) of vector fields on the 
manifold M, acts by derivations on A, we will now construct the complex 
C* = C(Der(A); A) of A-valued cochains of Der(A). First, recall that a p- 
cochain ap on the Lie algebra Der(A) with values in A is ap-linear antisymmet- 
ric mapping of Der(A) in A, i.e., 

p 
%: [Der(A)] p ---- A(Der(A)) ----> A (33) 

Let Cr(Der(A); A) denote the space of p-cochains of Der(A) with values 
in A and C* = C(Der(A); A) the graded vector space: 

C* = C(Der(A); A) = @ CP(Der(A); A) 
p~N 

(34) 

Proof As a continuation of the proofs of Propositions 1 and 3, here the 
property to o X = 0 implies that ko, leaves stable the invariant subcomplex 



812 Djemai 

This space is a graded A-module naturally equipped with a homogeneous 
differential d called the coboundary operator such that 

d: CP(Der(A); A) ---) CP+I(Der(A); A) 

k 
dap(Xo . . . . .  Xp) = ~ (-1)kXkap(Xo . . . . .  ~" . . . . .  Xp) 

O<_k<_p 

r+ Sotp r s 
+ ( - 1 )  ( [xr ,  Xs], x0, , ~', , ~" . . . . . . . . . .  Xp) 

O<~r<~s<p 

(35)  

k 
for • X1 . . . . .  • ~ Der(A) and -~ means omission of • (Greub et aL, 1976; 
Koszul, 1950; Chevalley and Eilenberg, 1948). 

With this operator, obtained by using the product of A and antisymmetri- 
zation on the arguments in Der(A), the complex C* becomes a graded differen- 
tial algebra with A as the subalgebra C~ A) of elements of degree 
zero, and with d a nilpotent antiderivation of degree + 1. 

The kernel of d is the module Z(C*) of cocycles and its image is the 
module B(C*) of coboundaries. Then, B(C*) C Z(C*) and the cohomology 
module H(C*) is defined to be the quotient Z(C*)/B(C*). 

2.5.2. The Subalgebra ~"~Der(A) 

From the universal Property 2 of I~(A), the identity map 

Ida: A ---) C~ A) --= A 

lifts uniquely as a homomorphism of graded differential algebras: 

�9 : Iq(A) ~ C(Der(A); A) (36) 

Generally, this homomorphism is neither surjective nor injective. Its 
kernel will be described in Section 2.6 and its image, denoted by 12Der(A), 
is defined to be the smallest graded differential subalgebra of C* that contains 
A. The graded differential algebra ~-~Der(A) is a quotient of O(A) and its 
elements of degree n ~ N are finite sums of terms of the form 

aodaldaz "'" dan (37) 

with a i E A and d the differential of the complex C*. If A -- A0 = C~(M), 
where M is a good smooth manifold (say a finite-dimensional connected 
paracompact Ca-manifold), ODer(A) coincides with the differential algebra 
~(A) of differential forms on M. 

In fact, Der(A) is nothing else than the Lie algebra of vector fields on 
M and I)Der(A) may be considered as a natural noncommutative generalization 
of the algebra Iq(M) of differential forms. 
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The cohomology n(~'~Der(A)) of ~'~Der(A) will be denoted by HDe,(A). It 
is also a graded algebra. 

To treat some particular applications, one needs to use the notion of 
completion l'}Der(A) of ~Der(A). It is defined as being the set of elements 
E C* such that for any finite-dimensional subspace F of Der(A), there is an 
element OL F E l'~Der(A ) such that 

a(Xl . . . . .  Xp) = aF(Xl . . . . .  Xp) (38) 

for • . . . . .  Xp E F. Obviously, ~oe~(A) is also a graded differential subalgebra 
of C*. It is also clear that, in the case of A = A0 with M the above-chosen 
manifold, one h a s  ~'~Der(A0) = ~'~Der(A0). We shall not make a distinction 
between l~Oe~(A) and ODer(A) except in the case where they do not coincide. 
In fact, the only example that we shall meet where ~)Der(A) is bigger than 
OVer(A) is the one of Ah (see Section 5.2.). 

2.5.3. The Operation o f  Der(A) in l)Oer(A ) 

AS in Section 2.3, we can also define an operation of Der(A) in C*. Let 
X, • • . . . . .  X,-1 E Der(A) and % E C"(Der(A); A). One may introduce 
an operation i x of Der(A) in the graded differential algebra C* defined by 
(n -- 1) 

ix: C"(Der(A); A) --~ C"-l(Der(A); A) 

such that 

i• . . . . .  Xn-1) = OLn(X, X l  . . . . .  X n - l )  (39) 

Then, i x is an antiderivation of degree - 1 and we have for all X E Der(A) 

i xoqb  = q ~ o i  x (40) 

[where qb is given by equation (36)], which implies that i x leaves stable 
f~Der(A)- 

Let us now define the derivation of degree zero L x by [see equation (27a)] 

L• = i x o d + d o i x (41a) 

and we have 

[ixl, i• = 0 (41b) 

[Lx,, ix21- = i[xl,x2 ] (41c) 

[Lxl, Lx2]- = Ltxt,xz ] (41d) 

So, we obtain an operation of the Lie algebra Der(A) of derivations of 
A in C* in the sense of Cartan (1950). 
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The operation i x may be restricted to F~D~r(A) [and also to the completion 
l~t)~r(A)] so that we have an operation of  Der(A) in I~D~r(A): 

i• C fiber(A) 

Effectively, if ap ~ f l~r(A)  with p --> I, then 

ix(ap) = 0, ~'X ~ Der(A) ~ c~p = 0 (42) 

It follows that the only horizontal elements of  lqt)~(A) = Gp~n 
I ~ ( A )  are the elements of  A = ~"~~ and that, in this sense, ODor(A) is 
a restriction of  I~(A) [it is a quotient of  f~(A)]. Then, we may define an 
operation of  Der(A) in OD~r(A). In this case, we have 

Lx(a) = • (43) 

for a E A = ~~ 
An element a ~ l'~O~r(A) will be called invariant if  [see equation (29)] 

Lx(a) = 0 

for any • E Der(A). 
In fact, here i x and L x generalize the usual notions of  inner product and 

Lie derivative, respectively. 
Finally, if we consider A to be a C*-algebra, we may define an antilinear 

involution on Der(A) and its extension to an antilinear involution on OD~(A) 
by setting 

x*(a) = (x(a*))* (44) 

for  X E Der(A) and a ~ A, and 

a~(X, . . . . .  Xp) = (%,(• . . . . .  X~))* (45) 

for a m ~ O~r(A)  and Xi ~ Der(A), respectively. 
Then, lqo,~(A) becomes a graded differential C*-algebra: 

d(a*) = (da)* (46) 

for  a e f~o~(A), and 

(Os /k [~q)* ( - -  q * * (47)  = 1) p [~q/k O/.p 

where oLp ~ l ~ r ( A ) a n d  [3q e ~-~qer(A). 
The derivations • ~ Der(A) and the elements ot ~ ODor(A) are called 

real if  they satisfy 

x = x* (48) 
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and 

respectively. 

c~ = or* (49) 

2.6. The Filtration of s 

Although I~(A) is not graded-commutative, a filtration of~(A) associated 
with the above-defined operation of Der(A) may be defined as in the usual 
graded-commutative case (Greub et al., 1976; Koszul, 1950). 

Namely, one defines subspaces FP(fln(A)) C l~n(A), p <-- n, by 

FP(~n(A)) = {an ~ I~n(A) / i• "" i• 

= 0, V• . . . . .  Xn-p+l E Der(A)} (50) 

and sets 

with 

FP(fI(A)) = (~  FP(II"(A)) (51a) 
n~p 

F~ = f~(A) (51b) 

FP+I(II(A)) C FP(I~(A)) (51c) 

FP(ft(A)) | Fq(ft(A)) C FP+q(II(A)) (51d) 

dFP(I't(A)) C FP(I](A)) (51e) 

Then, in particular, the FP(II(A)) are graded two-sided ideals of 12(A) 
and FP+I(Ft(A)) is a two-sided ideal in FP(I)(A)). 

Furthermore, the spaces FP(~(A)) are stable by the operations i x and L x 
for • ~ Der(A) [in view of equation (27c)] and by the differential d [in view 
of equation (27a)]. This implies, in particular, that the FP(Ft(A)) define a 
filtration of graded differential algebra on fI(A). This filtration is called the 
natural filtration or first filtration of I~(A). 

To such a filtration corresponds a convergent spectral sequence (Ek, dk), 
k ~ N, where Ek is a bigraded algebra: 

Ek = ~ EPk 'q (52a) 
p,q~N 

with a differential d~ homogeneous of  bidegree (k, 1 - k), and with 

Eo = ( ~  (F"(~t(A))/F"+I(I~(A))) (52b) 
n ~ N  
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In view of the triviality of the cohomology H(O(A)) (see Proposition 
3), E~ is the trivial bigraded algebra with 

E~ ~ = C 

ECg q = 0 

Consider the bigraded space 

F =  

where 

Then, one has 

(53a) 

for p + q -> 1 (53b) 

0 F p'q (54a) 
p,qEN 

F p,q = FP(~~P+q(A)) (54b) 

d E  p'q C F p'q+l (54a) 

F p'q @ F r'" C F p+r'q+s (54b) 

So, F has the canonical structure of a bigraded differential algebra with 
differential do homogeneous of bidegree (0, 1) induced by d. In this case, 
fI(A) coincides with the graded differential subalgebra: 

F ~ = G F ~ = @ F~ = F~ -- O(A) (55) 
nEN nEN 

This structure defines on the above-mentioned associated graded space 
E0 a structure of bigraded algebra with 

E p'q = FP,q/F p+l,q-I (56a) 

and a structure of differential algebra with differential do such that 

d E  p'q C E p'q+l (56b) 

It is obvious that the kernel of the homomorphism dO: II(A) ---> C* 
introduced below [see equation (36)] is, by definition, FI(O(A)). So, one has 

E O'p = OPer(A) (56c )  

E ~ = ~ E O'p = ~']Der(A) (56d) 
pEN 

On the other hand, • ---> L• defines an action of Der(A) by derivations 
of degree zero on the graded algebra OH(A). The complex C* = C(Der(A); 
IIH(A)) of cochains on Der(A) with values in On(A) is a bigraded algebra 
with differential do such that 
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and 

with 

C h ~- G CP/-] q (57a) 
p,qeN 

CP# q = Cq(Der(A); 12~A) )  (57b) 

doC~ q C C~ q+l (57c) 

C* = C(Der(A); A) = C~* = ( ~  C~" 
n~N 

Now, deduce from the homomorphism �9 a homomorphism 

(57d) 

�9 ': F ---> C* (58a) 

ixixl . . .  iXq(a) = 0 

for any • XI . . . . .  • ~ Der(A). This means that 

(Xl, X2 . . . . .  Xq) ---> i•215 "'" iXq(Or) 

is an element of rip'(a) E CP# q. 

dp;: Fp(I-I(A) ---> C(Der(A); flPn(A)) (58b) 

Let c~ be an element of F p'q = FP(~'~P+q(A)). Then, by definition, one has 

(59) 

(60) 

The application alp' so defined is clearly a homomorphism of bigraded 
algebras and differential algebras from F into C*. 

The kernel of the homomorphism 

I~i)p,q: F p'q ~ CPffl q (61) 

is manifestly F p+l'q-I  C F p'q, so the image of alp' is canonically riP'(F) = E0 
C C* as differential algebra and bigraded algebra. 

In particular, one has 

E~ ,~ = I~/(A) 

From the isomorphism 

one has 

(62a) 

E O'n = ~-~er(A) (62b) 

E1 ~ H(Eo, do) (63a) 

E7 ,~ = I)~(A) (63b) 

E ~ = H~er(A) (63c) 
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It is easy to prove that dl induces on E] ',~ = fIs(A ) the differential d. 
Hence, one has 

E~ '~ = H~(fI(A)) (64) 

and then we see that the spectral sequence ties between the cohomology 
algebras HDe~(A) and Hs(fI(A)). 

2.7. The Operation of Int(A) in ~'~Der(A) 

Let Int(A) be the Lie algebra of inner derivations of A. It is a Lie 
subalgebra (and also an ideal) of Der(A). One may define an operation of 
the Lie algebra Int(A) in the graded differential algebra l~Oer(A ) by restriction 
to Int(A) of the operation of Der(A) in I~D~(A ) presented in Section 2.5.3. 

The set of basic elements of fID~(A) for the operation of Int(A) is a 
graded differential subalgebra [lOut(A ) of l'~D~r(A) defined by 3 

Ilout(A ) = {ct e ['~,Der(A) ] ix(a ) = 0 and L• = 0, V X e Int(A)} 
(65) 

On the other hand, one has a canonical homomorphism 

0: C(Der(A); A) ---> C(Int(A); A) (66) 

The image 0(I-ID~r(A)) of  I~D~r(A) by this homomorphism is a graded 
differential subalgebra fli,t(A) of C(Int(A); A). 

2.8. The Filtration of l~Der(A) 

As in Section 2.6, one may define the filtration of ~"~Der(A) associated 
with the operation of Int(A) in 12Der(A). In this case, the corresponding spectral 
sequence (Ek, dk), k e N, ties the cohomologies Hout(A), Hint(A), and HD~r(A) 
of ~QOut(A), ['~lnt(A), and ~'),Der(A), respectively. In particular, one has 

j~p,0 = ~-~)ut(A) (67a) 

/~0,q = Hqt(A ) (67b) 

/~p,0 = nPut(A ) (67c) 

a n d / ~  is the graded space associated with the cohomology HDr for the 
induced filtration (Koszul, 1950). 

3It is important to point out that Sqou t is a functor of associative algebras and that l~out, Hout 
and HI(A,A) = Out(A) are Morita invariants. This leads to the construction of a projective 
A-bimodule of finite rank and the study of the cyclic cohomology of the underlying manifold 
with a nontrivial cocycle. We plan to treat this question in a future paper. 
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3. EXAMPLES 

3.1. The Limit  Case A = A0 = C~(M) 

This case is the most trivial one, since all the notions introduced above 
to define a noncommutative differential calculus reduce to the classical notions 
of the usual commutative differential geometry. 

In fact, for A ---- A0 = Ca(M), where M is a finite-dimensional paracom- 
pact connected C~-manifold, Der(A) reduces to the Lie algebra V(M) of vector 
fields Ok on M and l'~n(A) to the subspace of C~(M) | 1 of functions on M n+l 
that cancel out when two consecutive arguments coincide. 

One has 

D/~ - ~~ --= C (68a) 

i.e., the set of  constant functions on M, and 

1-17(A ) -- lq~(A) = 0 (68b) 

f o r n -  1. 
Hence, one obtains trivial invariant and basic cohomologies of II(A): 

H~ = H~ = C 

H'](f~(A)) = H~(I~(A)) = 0 for n --> 1 (69) 

On the other hand, it is clear that, by definition, f~Der(A) represents the 
graded differential algebra Iq(M) of differential forms on M. The induced 
cohomology Hoe,.(A) = H(f~O~r(A)) is nothing else than the De Rham cohomol- 
ogy HDR(M) of the manifold M. 

Finally, for the case A --= A0, one has 

f~out(A) = OD~r(A) ~- f~(M) 

Hout(A ) ~ HDer(A ) ~ HDR(M) 

and 

(70a) 

(70b) 

l'~'nt(A) = 0 for n --> 1 (70c) 

3.2. The Case A = Mn(C ) 

3.2.1. Differential Calculus 

In this case (Dubois-Violette et al., 1990a), where M,(C) represents the 
algebra End(C) of endomorphisms of C n (i.e., the set of complex n • n 
matrices, n -> 2), the complex Lie algebra Der(A) reduces to sl(n, C), since 
all the derivations of A = Mn(C) are inner. It follows that the complex (real) 
Lie algebra Der(Mn(C)) [Dera(Mn(C))] reduces to the Lie algebra sl(n)[su(n)]. 
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A derivation • of M.(C) is called real in the sense that it preserves 
Hermiticity, i.e., for E ~ Mn(C) one has [see equations (44) and (48)] 

x(E) = x*(E) = (• (71) 

Here, one may choose 

1 
00 = - tr(.) (72) 

n 

as an example of a linear form on A (i.e., 0o ~ A*) that satisfies the conditions 
of Propositions 1, 3, and 5. This choice implies that the invariant cohomology 
Ht(O(A)) of I~(A) is trivial. 

On the other hand, it is easy to see that the homomorphism ~ [see 
equation (36)] induces an injective application of I'~l(Mn(C)) in C~(sl(n); 
M,(C)). Since 

dimclT(M,(C)) = dimcCl(sl(n); M,(C)) = n2(n 2 - 1) 

one has 

~'~I(Mn(C) ) -- Cl(sl(n); M.(C))  (73) 

it is shown that the smallest differential subalgebra 
C(Der(M,(C)); Mn(C)) which contains Mn(C ) is 

Furthermore, 
~'~Der(Mn(C)) of 
C(Der(M.(C)); M.(C)) itself, i.e., 

ODer(M.(C)) -- C(sl(n, C); Mn(C)) - A sl(n, C)* | Mn(C) (74) 

Any element up of l"~Oer(Mn(C) ) is a p-linear antisymmetric mapping 

%: (Der(M.(C) p --~ M.(C) 

(x~ . . . . .  x . )  ~ %(x~ . . . . .  xp) 

and its differential dotp E ~-~P+rl(Mn(C)) is given by equation (35). 
The only elements of M,(C) that are invariant under Der(Mn(C)) [i.e., 

by the adjoint action of sl(n, C)] are the multiples of i c M~(C). Thus, it 
follows from the semisimplicity of sl(n, C) that the cohomology HDer(Mn(C)) 
of I)D~r(M,(C)) reduces to the Lie algebra cohomology H*(sl(n, C)): 

HD~r(Mn(C)) --- H*(sl(n, C)) (75) 

This cohomology is well known. It is the free graded-commutative algebra 
with unit A(tx3 . . . . .  ct2,-l) generated by OLZp-l, p = 2, 3 . . . . .  n, with OLZp-1 
of degree 2p - 1. In particular, one has 

HtD~r(M.(C)) = nZoer(M.(C)) = 0 (76a) 

such that every closed element of ~'~ler(Mn(C)) [or ~-~2Oer(mn(c))] is exact, 
and also 
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H~ = H3er(Mn(C)) = H~Zrl(M,(C)) = C (76b) 

Hence, the cohomology HD~r(Mn(C)) depends on the integer n. This is 
tied to the fact that, in the case A = Mn(C), one is only concerned with 
inner derivations. 

As in Section 2.5.3, there is an operation of the Lie algebra Der(M,(C)) 
in the graded differential algebra 12D~r(M,(C)) defined as follows: 

For any • ~ Der(Mn(C)), one defines an antiderivation of degree - 1  
of ~'~Der(Mn(C)) by equation (39) and 

i•176 = 0 (77) 

Then, L• [see equation (41a)] is a derivation of degree zero of ODe~(M,(C)) 
which extends • Here, i x (resp. L• is the analog of the inner product of 
forms by a vector field (resp. of the Lie derivative of forms by a vector field) 
and one has the characteristic relations (41b-41d). 

An element a of I~De~(Mn(C)) is called invariant if L• = 0 for any 
• E Der(Mn(C)). The set of the invariant elements forms a graded differential 
subalgebra with unit of Or~(M,(C)). 

and 

Moreover, one has 

~'~Der(Mn(C)) ~ ~'~int(Mn(C)) (78a) 

~'~~ ) = CI  (78b)  

l)~ut(M,,(C)) = 0 for n >- 1 (78c) 

3.2.2. Presentation of ~-~Der(Mn(C)) Associated with a Basis 

Let {Ek}, k E I = { 1, 2 . . . . .  n2-1},  be a basis of self-adjoint traceless 
n • n matrices. Then, { 1, Ek} is a basis of Mn(C) consisting of Hermitian 
matrices. 

As noted in Section 3.2.1, the derivations of Mn(C) are all inner, so the 
complex Lie algebra Der(M,(C)) reduces to sl(n) and the real Lie algebra 
DerR(Mn(C)) reduces to su(n). We will restrict ourselves to the real case. 

One has the following multiplication table: 

Ek" E~ = Kkll + S~ - ~ C'~ Em (79) 

where Kkz are the components of the Killing form of su(n) given by 

K~t = Kik = 1 tr(E~. Et) (80) 
n 
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(in the case where Kkt = ~kl, the basis becomes orthonormal), and 

S~ = S~ (81) 

and 

C~ = - C ~  (82) 

are real numbers. The latter correspond canonically to structure constants of 
su(n) [i.e., to the components of three ad-invariant su(n) tensors]. Then, the 
generators iEg span the Lie algebra su(n): 

[iEk, iEt] = C'k~(iEm) (83a) 

and the Jacobi identity gives the following relation: 

m m .  n m n Cij 'C~n "[- C~ Gin "[- Cki . f ;m : 0 (83b) 

Thus, 

S/t = C~t = 0 (84) 

and Kkt, SPm'Sg, and Cg~'Cg  are the components of three bilinear forms 
proportional to the Killing form on su(n), (k, l, m, p E 1). 

Finally, from (79) and (80) and using associativity, we obtain 

- - -  - C e m  

and it follows that 

is completely symmetric and 

Skim = S~lgpm (86a) 

Cktm = C~tKpm (86b) 

is completely antisymmetric. The quantities Skim and Cktm satisfy also some 
other relations (see, for instance, Macfarlane et aL, 1968). From (86a) and 
(86b) the role of the components Kkl naturally appears as components of the 
Cartan-Killing metric tensor of su(n) that lower or raise indices. We denote 
the components of the inverse matrix of (Kkt) by K kt such that 

Kkt" K In = ~ (87) 

It follows from the above relations that 

C~kr �9 C~s = -- 2nZKkl (88) 

Recall that we are no longer interested in the notion of the manifold 
itself [in our case, there are only two maximal left (or right) ideals that 
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eventually could be identified as points], but only in the algebra of functions. 
Our functions are therefore only 1, E~, and their C-linear combinations. 

It is quite straightforward to prove that the basis of all real derivations 
of Mn(C) is formed by the adjoint action of the generators of su(n). Defining 

ek =: ad(iEk) (89) 

we get a basis {ek}, k c L of DerR(Mn(C)) = su(n) such that 

[ek, et] = C"k} em (90) 

There are only n 2 - -  1 independent vector fields. Contrary to ordinary differen- 
tial geometry, these vector fields do not form a left module of Mn(C). This 
means that the linear operation defined by 

( E k e l ) ( E m )  = : Ek" el(Era) (91) 

is not a derivation of M.(C) since the Leibnitz rule is not satisfied. Only ek 
satisfies this rule with respect to the associative multiplication in M.(C): 

ek(El" Em) = ek(Et)" Em + Et" ek(Em) (92) 

Let us now construct the graded vector space llt~r(Mn(C)) -- 
C(Der(M.(C); M~(C)) of exterior forms % defined as the linear mappings 
[see equation (33)] 

P 
%: A(Der(M~(C)) ---> M~(C) 

The basis {ok}, k ~ /, of 1-forms dual to the basis of real derivations 
{em}, m ~ I, is therefore defined by 

Ok(em) = ~,k,1 (93) 

1 
such that it is identified with 1 | Asl(n, C)* C I)~or(M,(C)). 

By definition, the space of 1-forms is a module over Mn(C), i.e., one 
may also define the forms 

E0 k = 0kE 

VE ~ M n ( C ) ,  and in particular 

EmO k = OkEm (94) 

by taking their value on any ep: 

(EmOk)(ep) = Em(Ok(ep)) = ~kE m 
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The Grassmannian structure is introduced as usual, by defining the 
exterior product on the basis { Ok}: 

1 
(O k A om)(ep, eq) = -~ (Ok(ep).Om(eq) -- Om(ep) �9 Ok(eq)) 

= --(0 m A ok)(ep, eq) (95) 

The differential d of ~'~Der(Mn(C)) is defined independently of basis. 
First, on the 0-forms f (functions), one gets 

d f ( x )  = x ( f )  

with X a vector field. In our case, this yields 

d l - O  

dEk(e i) = ej(Ek) = i[Ej,  Ek] = Cj2Em (96a) 

which means that 

dE,~ = - C ~pEm Op (96b) 

In the general case, one could have chosen as a basis of 1-forms the set 
{dE~,}, k ~ I, but the latter present a problem due to the noncommutativity 

E,n 'dEk 4= d E k ' E m  (97) 

From now on, we will use the suitable basis {O k} for l)~er(Mn(C)). The 
formula (96b) can be inverted to yield 

O k = - ~ KPqKkrEp'ErdEq (98) 

If one takes, by definition, 

d(O k A 0 m) = dO k A 0 m -- O k ^ dO m (99) 

then 

d e = 0 (100) 

on any exterior product of p-forms. This result follows also from the Jacobi 
identity. Using the above relations, one obtains the important identity 

1 C~q0 p A 0 q (101) dO k = - -~  

which is the analog of the Maurer-Cartan identity on the group manifolds. 
The relations (79), (94), (95), (96b), and (101) for generators Ek, 0 'n and 

differential d give a presentation of ODer(Mn(C)). 
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Finally, since M,(C) is the analog of complex functions and the real 
subspace of Hermitian matrices is the analog of real functions, then the 
analogs of real vector fields are the real derivations in the sense of equation 
(71) and the 1-forms O k must be considered as real. Therefore, one is led to 
define an antilinear involutive mapping, for p e /, 

~-~Pe r (Mn(C) )  ---9 ~ ' ~ P e r ( M n ( C ) )  

such that 

~r O/.p -~- a i l . . . i p 0  il A 0 i2 A " ' "  A O ip ~ O/.p ~-- a~ l . . . i p0  il A 0 i2 A " ' "  A 0 ip 

(102) 

The elements % of ~r satisfying 

* = = (103) CLp % r a*l...ip ail...ip 

are said to be real. Since ~-~Der(Mn(C)) is the analog of complex differential 
forms, the real vector space of real elements of l)Oer(M,(C)) is the analog 
of the space of real differential forms. 

Notice that the mapping (102) is defined without any reference to the 
choice of the basis {Ek}, k e I, of Hermitian matrices. Furthermore, if Ctp is 
real, then doLp is also real [see equation (47)]: 

d(o~j) = (doLp)* 

An element 0 of f~er(Mn(C)): 

0 = EkO k 

is real [in view of equation (103)] and independent of the choice of the E~. 
In fact, one has 

0(ad(iE)) = E - I tr(E) 
n 

where E e Mn(C) (Dubois-Violette et al., 1989a,b). 
invariant: 

(104) 

Furthermore, 0 is 

L• = 0 (105) 

and any invariant element of ~er(Mn(C)) is a scalar multiple of 0. This latter 
is called the canonical invariant element of ~er(M.(C)) .  

Finally, using equation (104), we can rewrite (96b) and (101) in the form 

dE = i[0, El, VE ~ M.(C) (106a) 
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and, 

d(-i0) + ( - i 0 )  2 = 0 (106b) 

~7'Ot E ~'),~2erl(Mn(C))and 

f 

f 1 et = - tr(E) (109b) 
n 

One also has the following result. 

Lemma 1. (a) The linear mapping f is a closed graded trace, i.e., in 
addition to (109b), one has 

f da = 0 

Otp A 13q = ( - -1)  pq f [3q ^ Otp 

such that 

respectively. 

3.2.3. Integration 

A notion of volume element and of integration of p-forms on p-chains 
can be introduced here, too. As left (or right) M,(C)-module, 
~)2erl(Mn(C)) is spanned by the unique generator 01 ^ 0 a ^ . . -  ^ 0 "2-1. 
However, this element depends on the choice of the basis {E~}. Let 

k = det(Kkt) (107) 

be the determinant of  the real, positive-definite (n 2 - 1) • (n 2 - 1) matrix 
defined by equation (80). Then, the element 

(Ik])l/201 ^ 02 ^ " "  ^ 0 "2-1 (108a) 

depends only on the choice of the orientation of the basis {Ek}, k ~ L Thus, 
this real element is intrinsically defined up to a factor _+ 1 fixed by the choice 
of an orientation. An arbitrary element ot ~ O~-I (M,(C))  can be written as 

a = E(]k])lnO l ^ 02 ^ . . .  ^ 0 "2-1 (108b) 

for E E M,(C). 
One defines an integral over the total volume by means of a linear 

mapping 

f :  ---) (109a) ~-~)~r I (Mn(C))  C 
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where Ctp ~ ~-~er(Mn(C)), ~q E ~'~qer(Mn(C)), and p + q = n 2 - 1; 

(b) (Ikl)I/201 A 02 A "'" ^ 0 n2-1 is invariant, i.e., 

Lx( ( l k l )~ /201  ^ 02 ^ " . -  ^ 0 n2-t) = 0 

V X E Der(M,(C)). 

Proof. Statement (a) means that (I~Der(M,(C)), f )  is a cycle of dimension 
n z - 1, in the sense of Connes (1986). It follows from (101) and from the 
complete antisymmetry of Cktm [see equation (86b)] that one has 

d(0 it A 0 i2 A " ' '  A 0 in2-1) = 0 (110) 

This implies that the element (108a) is invariant [i.e., statement (b) of  
the lemma] and also shows that the only contributions to dot, ct being an (n 2 
- 1)-form, come from the differential of linear combinations of terms of 
the form 

Ek 0il A 0 i2 A " ' '  A 0 in2- |  

Then, using equation (96b), one deduces that dot must be of the form 

dot = E0 I A 0 2 A - . . A 0  ~2-1 

for some traceless matrix E. Therefore, it follows from equation (109b) that 

f de~=O 

Finally, it is easy to check that 

f tXpA ~q = (--1)Pq f ~qA Otp 

by using equation (95). �9 

3.2.4. Canonical Riemannian Structure 

The form of  the volume element (108a) looks like the volume element 
of a metric. This suggests the introduction of a flat metric defined by the 
symmetric 2-form 

K = KktOkA 0 p (111) 

belonging to 

2 
Mn(C) ~) AsI(n, C)* C ~-~Derl(Mn(C)) (~) ~"~Derl(Mn(C)) 

Mn(C) 
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with Kkt being the Cartan-Killing metric of su(n) [or sl(n, C)] given by 
equation (80) and its inverse is denoted by K kt [equation (87)]. K is really 
the analog of an invariant Riemannian metric [for Mn(C)] and we shall call 
it the canonical Riemannian structure. 

The Hodge-star isomorphism can be introduced as usual, i.e., 

"k: ~'~DerP(Mn(C)) ~ ~-~Dern2-l-P(Mn(C)) (112a) 

such that, on any p-form % given by the product of p basic 1-forms O k, it 
is defined by 

(Ikl) ''= gi l j  I . . .  * ( 0 i l  ^ "'" ^ Oip) = ( n  2 - 1 - p ) !  

gipJP~.jl...jn210jp+I A " ' "  A 0 jn2-1 (112b) 

and, with respect to the multiplication by functions E [elements of M,(C)], 
one postulates 

* ( E 0  il A " ' "  ^ 0 in) = E [ * ( 0  il A " ' "  A 0ip)] (112c) 

where eil...y,2_ ~ is the totally antisymmetric Levi-Civita symbol defined as 
usual, with 

~123...(n2-1)---- 1 (113) 

Then, one has 

*( ~'~DerP (Mn( C) ) ) C ~'~oernZ- l -p(Mn( C) ) 

and 

*( ~tOtp) = (-- 1)pn2otp (1 14) 

In the graded differential algebra l~Der(Mn(C)), one can also introduce 
a scalar product between any two real exterior differential forms: 

( ' [ ' ) :  ~Der(M.(C)) • f~D~r(M.(C))~ R (l15a) 

defined by 

(a.[3) = I I a A * ( [ 3 )  if Ot,[~ e ~DerP(Mn(C))  
(l15b) 

otherwise (i.e., not of the same degree) 

In view of the graded trace property (see Lemma 1), one has 

(c,l~) = (~1~) (115c) 

and this inner product is a real, positive-definite bilinear form on the real 
subspace of real elements of 12Der(Mn(C)). 
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This definition can be extended to the complex p-forms as 

(ctl[3) = (ct*l[3) (l15d) 

where (. I.) is a positive-definite Hermitian bilinear form on ODer(M,(C)). 
So, (I'~D~r(Mn(C)); (-I .  )) is a graded finite-dimensional complex Hilbert space. 
Define now an antidifferentiation 

g. 

by 

~13erP(Mn( C) ) ~ ~-~DerP-l(Mn(C)) (l16a) 

(b) We have 

Act = 0 r dot = 0 and got = 0 (117d) 

Any element ct E l~Der(Mn(C)) which satisfies (l17d) is called harmonic. 
The set of these elements is the kernel of A. It is a graded vector space. 

All exterior forms satisfying 

got = 0 (118a) 

(dct[[3) -- (ct[g[3) (l16b) 

Vct, ~ ~ ~-~Der(Mn(C))- 
Integrating by parts and using the fact that f is closed [see equation 

(109b)], one verifies that 

g(ctp) = ( - - I )  (nz-l)p+n2ct 0 d o *(ctp) ~ ~'~DerP-l(Mn(C)) (116c) 

for any p-form ap. It follows that, in particular, one has 

g(ct0) = 0 (116d) 

if a0 is a 0-form (i.e., a function). 
As usual, one can now define the Laplace-Beltrami operator (i.e., the 

Laptacian) A on I"~Der(M,(C)) by 

A = d o g  + g o d  (l17a) 

Using equations (115c) and (116b) and the bilinearity of (. I" ), one has 

(ctlAct) = (dctldct) + (get[get) = Ildctll z + Ilgctll z (l17b) 

It follows that: 
(a) A is a definite-positive operator on the Hilbert space (~']Der(Mn(C); 

(.  I .)):  

A ~ 0 (117c) 
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are said to be orthogonal in the sense of (115b) to the closed forms 13 for which 

d13 = 0 (118b) 

This means that, by definition, the orthogonal complement of 
81~D~r(M.(C)) is the space of forms [3 E IqD~r(M.(C)) satisfying (118b) and 
the orthogonal complement of dlqD~r(M.(C)) is the space of forms a E 
12D~r(M.(C)) satisfying (118a). There follows a decomposition 

I]D~r(M,(C)) = d~qD~r(M,(C)) O 8~qoer(Mn(C)) @ Ker(A) (118c) 

of the Grassmannian s in three orthogonal subspaces, which is 
the analog of  the Hodge-De Rham decomposition. 

Proposition 6. The linear mapping of  Ker(A) in Ho,r(M,,(C)) that associ- 
ates to a ~ Ker(A) its class [et] in HD~r(M,(C)) is an isomorphism of graded 
vector spaces. Furthermore, a e Ker(A) if and only if a is an invariant 
element of the subalgebra 1 | Asl(n; C)* of Ooc~(Mn(C)) generated by the 
0/',k ~ I = {1,2 . . . . .  n z - 1}. 

Proof Let ot E Ker(A); then if c~ + d13 E Ker(A), one has [see equa- 
tion (117d)] 

~d13 = 0 

So, from equation (116b) one has 

(~18d~) = (d~[d~} = 11d[3[[ 2 = 0 

which implies that 

dB = 0 

This shows that Ker(A) ~ oL ~ [a] ~ Ho~r(Mn(C)) is injective. 
The subalgebra 1 | Asl(n, C)* C l~O~r(Mn(C)) generated by the O k is 

a differential subalgebra of ~Der(Mn(C))- Let I0 denote the algebra of the 
invariant elements of 1 | Asl(n, C)*. By using the Koszul formula (Koszul, 
1950) and equations (116), one checks that if  e~ E I0, one has dcx = 0 and 
80r = O. 

On the other hand, one knows (Koszul, 1950) that er --4 [~x] is a bijection 
of I0 onto Ht~r(Mn(C)) = H*(sl(n, C)). This shows that a ~ [~x] is surjective 
and therefore bijective from Ker(A) onto HDedM,(C)) and that therefore 
Ker(A) coincides with I0. �9 

Remark. The last statements have a classical geometrical interpretation. 
If one identifies the generators O k with the components of the Maurer--Cartan 
form of su(n), then 1 | Asl(n, C)* is identified with the differential algebra 
of left-invariant forms on su(n), and Io with the algebra of bi-invariant forms 
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on su(n). Then, the 2-form K given by equation (111) is the metric of su(n) 
(up to a factor) and the harmonic forms [see equation (l17d)] are nothing 
other than the bi-invariant forms on su(n). These results are also true for any 
compact semisimple Lie group. 

3.2.5. The Example of M2(C) 

The generators of M2(C) are the 2 • 2 unit matrix t and the Hermitian 
traceless 2 • 2 matrices ~.i, J = 1, 2, 3 (Pauli matrices) (Dubois-Violette et 
al., 1990a; Kerner, t990), 

o:(0110) 
(119) 

One has 

f f  k" (Tl = ~kl" 1 "F- i~.klm(rm (120) 

Thus, comparing to formula (79), one obtains 

Kkl = gki (121a) 

Cki m = Ckim = -- 2ekim (12 lb) 

Ski m = 0 (121c) 

As in Section 3.2.2, one introduces 

ek = ad(hrk) (122a) 

and the O k e f~t~r(M2(C)) such that 

Ok(ep) = g~l (122b) 

Then, 

(rk0 i =  0Jerk (123) 

O k A 0  t =  - 0  t A 0  h (124) 

dtrk = 2~klmCrm Op (125) 

d0 k = e/km 0i A 0 m (126) 

The formulas (120) and (123)-(126) give a presentation of I~Der(M2(C)). 
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The Hodge-star operator [see equation (112)] acts on the generators of 
~Der(M2(C)) as follows: 

1 
*(1) = g ~-klm ok A 01A 0 m (127a) 

1 0m *(O k) = ~ e/k m 0 t A (127b) 

*(O k A 0 t) = ~ 0 m (127c) 

*(O k A 0 l A 0 m) = ~.klm I (127d) 

Let us now proceed to a diagonalization of the Laplacian A. Since A 
is invariant in the sense that 

L x o A = A o L •  (128) 

V X ~ Der(Mz(C)), it follows that the irreducible components of ~-~Der(M2(C)) 
for the representation of sl(2, C) [--- Der(M2(C))] given by 

X---~ L x 

are the eigenstates of A. This representation corresponds to the adjoint repre- 
sentation, i.e., of so(3). 

Furthermore, one has 

* o A = A o *  (129) 

so it is sufficient to study only ~-~Der~ and OOerl(M2(C)). 
The first ~-~Oer~ = ME(C ) splits into two irreducible components: 

1. The one-dimensional subspace spanned by I. 
2. The three-dimensional subspace spanned by the O'k. 

Then, one obtains the following eigenfunctions of A on f~Der~ 

A(1) = 0 (130a) 

A(O.k) = 8o.k (130b) 

On the other hand, Utoerl(M2(C)) splits into four irreducible components: 

1. The three-dimensional subspace spanned by the 0 h. 
2. The three-dimensional subspace spanned by [3~ = o.k0 t - o.10 k or 

equivalently by the do.k. 
3. The five-dimensional subspace spanned by p~ = O.k01 + O.~0 k - 2 

g~O.pOP. 
4. The one-dimensional subspace spanned by 0 = O.~0 k. 
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In this case, the eigenfunctions of A are given by 

A(0 k) = 40 k (130c) 

A(dak) = 8d~  (130d) 

A(p/) = 16p k (130e) 

A(0) = 40 (1300 

For 12t~r2(M2(C)) one takes the star of the decomposition of ~Der I(M2(C)) 
and for [-~Der3(M2(C)) one takes the star of the decomposition of ~-~Der~ 

The obtained eigenvalues in equations (130) are 0, 4, 8, and 16. The space 
of 32 linearly independent functions is composed of orthogonal subspaces of 
the Grassmannian [-~Der(M2(C)) corresponding to different eigenvalues. 

Likewise, the operator B + d can be diagonalized. Its eigenvalues are 
0, ___2, ___(2) ~/z, and ---4. Of course, the corresponding eigenfunctions are no 
longer homogeneous p-forms. 

Finally, similar considerations of invariance and commutation with the 
star-isomorphism apply for M,(C). However, to compute the eigenvalues of 
A, one needs explicitly the coefficients in the formula (79). 

3.3. The Case of  A = C~(M) | M~(C) 

Let us investigate now the possibility of constructing a larger algebraic 
structure which would contain a commutative part and a noncommutative 
part. The most natural choice is to consider the algebra A = A0 | M~(C) of 
smooth Mn(C)-valued functions on a connected and simply connected mani- 
fold M, where A0 = C~(M) represents the commutative part (see Section 3.1) 
and Mn(C) the noncommutative part (see Section 3.2) (Dubois-Violette et 
al., 1990b). In this section, we will study the noncommutative differential 
geometry of A. Some features of the noncommutative geometry of algebras 
of this type were investigated in Madore (1988; see also Madore 1993a,b) 
in a different context. 

3.3.1. Differential Calculus and Presentation of ~'~Oer(m ) 

At any point x E M, one may define a homomorphism of C*-algebras 
with units 

hx: A = A0 | Mn(C) --~ Mn(C) 

by 

hx(f |  E) = f(x)E (131) 

Vf  E Ao and VE ~ M~(C). 
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The center of A is its subalgebra Ao | 1 and the Lie algebra Der(A) of 
all derivations of A is a module over its center. So, Der(A) is an A0-module. 

In general, for two arbitrary associative algebras A1 andA2, the derivation 
of their tensor product is not the simple sum of derivations of each of them: 

Der(Al | A2) ~ Der(A0 �9 Der(A2) 

In our case, where Der(A0) is the Lie algebra of smooth vector fields 
0~ on M and Der(M,(C)) is the Lie algebra sl(n; C), it is clear that 

(Der(A0) | 1) G (A0 | Der(M,(C))) 

is a Lie subalgebra and an A0-module of Der(A). In fact, one has the follow- 
ing result. 

Lemma 2. 

Der(A) = (Der(A0) | 1) ~) (A0 | Der(Mn(C))) (132) 

Proof Let • be a derivation of A. Then, 

Ao ~ f --~ x( f  | I) 

is a Mn(C)-valued vector field on M. Therefore, one has 

x ( f |  E) = x( ( f |  I).(1 | E)) = X((1 | E ) . ( f |  i)) (133a) 

i.e., 

x q |  I).(1 |  + ( f |  ~)'X(1 | = (~ | E) 'x ( f |  1) 

+ X(~ | ~ ' ( f |  1) (133b) 

and therefore 

x ( f |  1).(i | E) = (i | E ) ' x ( f |  1) (133c) 

Vf e A0 and VE E Mn(C). It follows that x ( f |  1) is in A0 | i, Vf ~ A0. 
This shows that the restriction •174 is in Der(A0) | I. 

Now, at any point x ~ M, the mapping 

E ---> hx(x(1 | E)) 

defines a derivation of Mn(C), where hx is given by equation (131). 
This implies that the restriction X~u~M,,(c)) is in Ao | Der(M,(C)). l 

An element a of A is a generalized function in the sense that it generalizes 
the notion of a smooth function f on M into a notion of a smooth M,,(C)- 
valued function on M. A presentation of l~oer(A) is essentially based on the 
presentation of l~Oer(M,(C)) given by the relations (79), (94), (95), (96a), 
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and (101) in Section 3.2.2. Hence, in a given basis { 1, Ek}, k ~ I = { 1, 2, 
. . . .  n 2 -  1} ,onehas  

a = f~ | 1 + fl(x) | Ek =- f~ + fl(x)E~ (134) 

Then, any derivation • of  A can be represented as 

X = X~(X) 0~ | 1 + xk(x) | ad(iEk) (135) 

where a~ - O/Ox ~ ~ Der(A0), tx = 1 . . . .  , dim(M) = m, ad(iEk) = e~ 
Der(M.(C)), and X~(X) and • are functions of x ~ M. 

Now, define the graded differential algebra ODor(A). First, recall that 
for any two arbitrary graded differential algebras f~l and l"12 with differentials 
d~ and d2, respectively, the tensor product ~ |  is naturally a graded 
differential algebra with differential d if the tensor product is defined by 

(a | 13) ^ ('q | p) = ( -1)r"(a  A Xl) | (13 A p) (136a) 

for et ~ ~ ,  13 ~ ~q~, rl E ~ ,  and 13 a 1"~2, and the differential d by 

d(ot | 13) = (d~ot) | 13 + ( - l ) P a  | (d213) (136b) 

X/a ~ 12~ and V13 ~ ~"~2. 
It follows from Lemma 2 that C(Der(Ao); a0) | C(Der(M.(C)); M.(C)) 

is a graded differential subalgebra of C(Der(A); A). Then, the smallest differen- 
tial subalgebra Oo~r(A) of  the complex C(Der(A); A) which contains A is 

~"~Der(A) = ~'~Der(A0) ~ ~-~Der(Mn(C)) = ~"~(M) @ M.(C) | Asl(n; C)* 
(137) 

where ~D~(A0) = I'~(M) is the graded differential algebra of exterior differen- 
tial forms on M identified with the differential subalgebra f~(M) | 1 of 
~D~(A), and ~D~(M.(C)), given by equation (74), is identified with the 
differential subalgebra 1 | I~or of ~I~(A). In the second (or the 
third) member of equation (137), the tensor product is the usual (twisted) 
tensor product of graded differential algebras. 

Let us remark that, generally, for two arbitrary associative algebras A1 
and A2 one has 

~-~Der(at ~ a2) ~ ~'~Der(at) ~ ~-~Der(a2) 

For instance, for A1 --- Mn(C) and A 2 = Mm(C) one has 

I~O~r(M.(C) | M.,(C)) = M,,(C) | Mm(C) Q Asl(nm; C)* 

when 

f~Der(M.(C)) | f~Der(M,.(C)) 
= M.(C) | Asl(n; C)* | M,.(C) Q Asl(m; C)* 
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and 

sl(nm; C) = (sl(n; C) | sl(m; C)) • (sl(n; C) | 1) + (I | sl(m; C)) 

Then, the relation (137) is particular enough in the sense that it comes 
from the commutativity of C~(M). Now, from equation (137) one deduces 
that riDer(A) is naturally a bigraded differential algebra: 

flb~r(A ) = fF(M) | 12ber(M.(C) ) (138) 

If d denotes the differential of f~Der(A), then 

d = d l  + d2 (139a) 

where dl is the unique antiderivation of f~D~r(A) extending the exterior differ- 
ential of f~(M) such that 

dl(f~De~(Mn(C))) = 0 (139b) 

and d2 is the unique antiderivation of ~D~r(A) extending the differential of 
f~DCr(Mn(C)) such that 

d2(fl(M)) = 0 (139c) 

The bidegrees ofdl,  dE, and d are (1, 0), (0, 1), and (1, 1), respectively, 
and one has 

d z = d 2 = d~ = dld2 + d2dl = 0 (139d) 

Then, l~o~f(A) is effectively a bigraded differential algebra and the action 
of the differential d on a generalized function a E A is given by 

da = dl f~ | 1 + d l f  k (x) | Ek + fl'(x) ~ d2Ek 

= [O~f~ | i + O~fk(x) | E~]dlX ~ - [fk(x)~kt | Em] 0 t (140) 

Finally, we close this subsection with a discussion of the notion of reality 
in the case of the *-algebra A = Ao | M.(C). Let DerR(A) denote the real 
Lie subalgebra of Der(A) of derivations • such that [equations (44) and (48)] 

x(a*) = (x(a))* (141) 

In our case, DerR(A) is defined by 

DerR(A) = (DerR(A0) | I) �9 (C~(M) | DerR(M.(C)) (142) 

where DerR(A0) is the real Lie algebra of real vector fields on M, C~(M) is 
the real algebra of real functions on M, and DerR(M.(C)) is the Lie algebra 
su(n) for its adjoint action on M.(C). 
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The extension of this antilinear involution on On,r(A) is defined by 

(e~ | 13)* = or* | 13" (143a) 

for a E I I (M)and 13 e ~-~Der(Mn(C))with 

being the usual complex conjugation of differential forms on M and 

being the involution of ~D~(M~(C)) [see equation (102)]. 
An element to of I"~D~(A) is then said to be real if 

to* = to (143b) 

and purely imaginary if 

oJ* = - to  (143c) 

3.3.2. Metric for  A and scalar product for  ~-~Der(A) 

Let M be an oriented Riemannian manifold with a metric as 2 defined 
in a system of local coordinates {x ~} by 

ds 2 = g~dx~ A dx ~ (144) 

and let { g"~} be the inverse matrix of gr 

g ~ g ~  = 8~ (145) 

On the other hand, we introduced in Section 3.2.4 the so-called canonical 
Riemannian structure for lqo~r(Mn(C)) [see equation (I 11)]: 

K = KktO ~ A 0 t 

where Kkt is the Cartan-Killing metric for su(n). 
The metric G for A is naturally obtained by a combination of these two 

structures, i.e., 

G = g~dx  ~ A dx v + p2gmnOm A O n (146) 

where p is some constant that may be interpreted as a length [or (mass) -1, 
denoted by p = m -~, in the case where h = c = 1]. 

Now, define a scalar product for 12D~(A ) = f~(M) | l'~Der(Mn(C)). First, 
the scalar product for Ft(M) is defined by means of the Hodge-star 
isomorphism: 

*: 12P(M) ---) f~'-P (147) 
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associated with the metric (144) and the orientation of M m, such that 

Ca[~') = ^ *((x') if o~ and c~' (148) 

otherwise (i.e., if not of the same degree) 

At this level, let us remark that this positive Hermitian scalar product 
is defined on f~(M) only if M is compact. Otherwise, one has to restrict 
attention to differential forms for which Ca l oL) < co, for example, the forms 
with compact support. 

In Section 3.2.4, we introduced a Hodge-star isomorphism of 
l'IDer(Mn(C)) [see equations (112a)-(112c)] that is associated with the canoni- 
cal Riemannian structure K. Using this Hodge-star isomorphism and the 
graded trace property (see Lemma 1), we defined a scalar product on 
~'~Oer(Mn(C)) [see equations (115a)-(115d)]. 

In the case of 12Oer(A), the metric is now defined by (146) and it follows 
from the presence of the constant p2 that the scalar product on ~t)~r(Mn(C)) 
given by equation (115b) is rewritten as 

C[~[13,)=~pn2-1-2pl[~*ACr([~ ') if [3,[3' ~ f t ~ r ( M . ( C ) ) ( 1 4 9 )  

L0 otherwise 

Now, by means of equations (148) and (149) one may define a scalar 
product on 12D~r(A) by 

Ca | [3lot' | [~') = (ala')-CI3ll3') (150a) 

Va, a '  ~ I~(M) and 13, 13' ~ OO~r(M,(C)), i.e., 

Ca | 131a' | 13') (150b) 

= [pn2-1-2qfM(XlArk(Ot')" f ~*A*(~') 

[ if a, a ~ 12P(M) and [3, 13' E oqe~(Mn(C)) 
10  otherwise 

4. N O N C O M M U T A T I V E  S Y M P L E C T I C  S T R U C T U R E S  

4.1. Introduction 

Let M be a smooth manifold. Recall that a symplectic form on M is a 
real, closed, nondegenerate differential 2-form o) on M. Therefore, ~o is a 
symplectic structure for the commutative algebra Ao = C~ of smooth 
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complex functions on M if and only if (M, ~o) is a symplectic manifold 
(Guillemin and Sternberg, 1984; Arnold, 1989). 

Given such a 2-form, one defines the Hamiltonian vector field Ham(f )  
associated with f E A0 by 

co(x, Ham(f))  = • (151) 

for any vector field • E V(M) --- Der(A0), and one defines the Poisson bracket 
{f, g}p of two functions f, g E Ao by 

{f, g}e = o~(nam(f), Ham(g)) = Ham( f  )(g) = - H a m ( g ) ( f )  = - { g, f}e  
(152) 

The closure property 

dto(Ham(f), Ham(g), Ham(h)) = 0 (153a) 

induces the Jacobi identity 

{f, {g, h}e}p + {h, {f, g}e}p + {g, {h,f}p}v = 0 (153b) 

and the property 

dco(• Ham(f) ,  Ham(g)) = 0 (154a) 

'v' x E Der(Ao) is equivalent to 

[Ham(f),  Ham(g)] = Ham({f, g}e) (154b) 

where [, ] is the Lie bracket. Furthermore, it follows from 

{f, g}e = H a m ( f  )(g) (155) 

that one has 

{f, g 'h}e = {f, g}e'h + g" {f, h}p (156) 

4.2. Definit ions 

Let us now define the analog of the classical symplectic structure in 
the case of a noncommutative associative algebra A. 

Definition 1. An element co of the graded differential algebra l-l~)er(A) 
will be called a symplectic structure for A if and only if it satisfies the 
following conditions: 

(a) Nondegeneration: For any a ~ A, there is a derivation Ham(a) 
Der(A) such that 

co(X, Ham(a)) = x(a) (157) 

for any • ~ Der(A). 
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(b) Closure: co is closed, i.e., 

dco = 0 (158) 

Notice that condition (a) implies that Ham(a) e Der(A) is unique for a 
given a e A, i.e., one has a linear mapping 

A ---> Der(A) (159) 

Remark also that in the commutative case A0 = C~(M), condition (a) 
means that co is a nondegenerate 2-form on M. 

Definition 2. Let co be a symplectic structure for A. One defines the 
corresponding generalized Poisson bracket {a, b} of a, b e A by 

{a, b} = to(Ham(a), Ham(b)) (160) 

It follows that 

and that the mapping 

{a, b} = -{b ,  a} (161) 

b --> {a, b} (162) 

is a derivation of A which is precisely Ham(a). 
Furthermore, condition (b) in Definition 1 implies that this Poisson 

bracket satisfies the Jacobi identity 

{a, {b, c}} + {c, {a, b}} + {b, {c, a}} = 0 

and 

(163) 

[Ham(a), Ham(b)] = Ham({a, b}) (164) 

Thus, everything works as in the commutative case (see Section 4.1). 

5. EXAMPLES 

5.1. The Case of A = M.(C) (The Canonical Symplectic Structure) 

Here, the procedure is based on the fact that A = M,(C) is the analog 
of Ao = C~(M), Der(A) is the analog of the Lie algebra of vector fields V(M) 
= Der(A0), and ~Der(A) is the analog of the algebra of differential forms I-I(M). 

In this case, it is obvious to call a symplectic structure a real closed 
element co of l~er(M,(C)) such that, for each E e M,,(C), 

oJ(X, Ham(E)) = X(E) (165) 

VX e Der(M,,(C)), possesses a unique solution Ham(E) e Der(Mn(C)). 
Then, the Poisson bracket {E, F} of E, F e M,(C) is defined by 
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{E, F} = to(Ham(E), Ham(F)) = -{F,  E] (166) 

Furthermore, the property 

do (Ham(E), Ham(F), Ham(G)) = 0 (167a) 

is equivalent to the Jacobi identity 

{E, {F, G}} + {G, {E, F}} + {F, {G, E}} = 0 (167b) 

and 

[Ham(E), Ham(F)] = Ham{ {E, F} } (167c) 

Thus, all works as in the classical case (see Section 4.1). 
Suppose now that there is a symplectic structure for A = M,(C). Then, 

its Poisson bracket {, } must be proportional to the commutator [,]_ since 
it is a derivation in each variable which is antisymmetric and since all 
derivations are inner. Thus, one must have 

i 
{E, F}h = ~ [E, F]_ 

VE, F e Mn(C) and h is some number. 
On the other hand, since ~-~Der2(Mn(C)) = C2[Der(Mn(C); Mn(C)), one 

defines an element to of I)DerZ(M~(C)) by setting 

to(ad(h E ), ad(h F ) ) =  ad(h E ) ( F ) = - a d ( h  F ) ( E ) =  h[E,  F]_ 

(168) 

VE, F e Mn(C). This implies that: 
(i) o~ is a symplectic structure for Mn(C). 
(ii) We have 

.)  ,69) 

(iii) The following holds: 

i 
{E, F)~ = ~ [E, F]_ (170) 

The symplectic structure to must be exact since it is invariant and closed, 
i.e., since nDer2(Mn(C)) = 0 [see equation (76a)]. For this reason and based 
upon the results of Section 2.5.2, we will define what we will call the 
canonical symplectic structure. 
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Let 

0 = Ek0 k = 0~Ek (171) 

be the canonica l  invariant  e l emen t  of OOerl(Mn(C)) introduced below [see 
equations (104), (105), (106a), and (106b)]. In fact, 0 is independent of the 
choice of the basis {Ek}, k ~ I = { i, 2 . . . . .  n 2 - 1 }, and any scalar multiple 
of 0 is also an invariant  e l emen t  of I~D~r1(Mn(C)). Let us take the element 
h0 and show that it is invariant  in the sense that 

Lek(hO) = 0 (172) 

To show this, it is easy to see that 

iek(hO) = hEk (173) 

and that the differential of this element does not vanish [see equation (106b)]: 

h ClmkEkot ^ Om = ihO A 0 d(hO) = d(hEkO k) = hdEk A O h + hEkdO k = 

(174) 

where we have used equations (82), (96b), and (101). 
So, one has 

d o iek(hO) = -hCklmEm Ol (175) 

Thus, 

iek 0 d(hO) = hC~mEmO l (176) 

and finally, one verifies equation (172): 

Lek(hO) = (d  o iek + iek 0 d) (hO)  = 0 

Setting by definition 

h 0t (177) oo = d(hO) = -~ CktmEmO k A 

it is obvious to see that oJ is closed: 

dr = d2(hO) = 0 (178) 

and nondegenera t e  in the usual sense, i.e., if, for some e~ = ad((i/h)Ek) 
Der(Mn(C)), one has 

i i 
oo(e~, et) = e~(Et) = -~ [Ek, Et]-  = -~ CklmEm = 0 (179) 

for all el = ad((i/h)El) ~ Der(Mn(C)), then ek must be identically zero. 
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Then, the element to e ~'~De2(Mn(C)) given by equation (177) satisfies 
the conditions of the Definition 1 in Section 4.2 with a unique solution: 

Ham(E)=  ad(h E) (180) 

for E E M,(C). This is due precisely to the fact that to is nondegenerate. 
Thus, the corresponding Poisson bracket is given by 

i 
{E, F}h = to(Ham(E), Ham(F)) = ~ [E, F]_ (181) 

for E, F E M,(C). We call to the canonical symplectic structure for Mn(C). 

5.2. The Case of A = A~ (The Heisenberg Algebra) 

Define the Heisenberg algebra A~ as the *-algebra with unit generated 
by two Hermitian elements p and q satisfying 

[p, q]_ = ih[ (182) 

Here, we consider only one degree of freedom for notational conve- 
nience, but it is straightforward to take the extension to a finite number of 
degrees of freedom. 

It is easy to show that all elements of Der(A~) are inner derivations, so 
again, as in the above example, if there is a symplectic structure for A~ 
then the corresponding Poisson bracket must also be proportional to the 
commutator (Dirac, 1926) 

i 
{A, B}~ = ~ [A, B]_ (183) 

for A and B ~ An. 
On the other hand, we define an element to E C2(Der(An); A~) by setting 

to ad A ,ad  B = { A , B } ~ = ~ [ A , B ] _  (184) 

Now, to obtain the expression for to one needs to use the notion of star- 
product in the context of the deformation of algebraic structures (see, for 
instance, Vey, 1975; Flato et al., 1975, 1976; Bayen et al., 1978). The trick 
is to remark that (see Proposition 5 in the appendix) 

*0 = *(*~.;v~oi~,~o~w-~;~o~L ~o~1~ = """ (185) 

where 

h 
v = -- (186) 

2i 
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Then, one directly verifies that to is given by an infinite sum: 

1 
to = ~ (2h)"(n + 1)! [ ' ' "  [alp, p], p . . . . .  p] 

n->0 k, v "  / 

n times 

^ [.-. [dq, q], q . . . . .  q] (187) 
\ _ . r _ _ _ . _ J  

n times 

where only a finite number of terms are different from zero, because we 
consider only the inferior degree of polynomials whose derivations are ad- 
type. 

This symplectic structure will represents the quantum analog of the 
classical one: 

since 

too = d p  ^ d q  (188) 

[.-. [alp, p], p . . . . .  p] ^ [.-.  [dq, q], q . . . . .  q] -- h 2n (189) 

produces the expected formal  classical limit: 

lira to = too (190) 
h-->0 

Thus, to is in l~OerZ(A~) and more precisely in its completion ~nerZ(AD 
(see Section 2.5.2) and the properties of the commutator [, ]_ induce that to 
is indeed a symplectic structure, i.e., satisfies the conditions of Definition 1 
in Section 4.2. Here, one has 

Ham(A)=  ad(~ A) (191) 

and the corresponding Poisson bracket is given by equation (183). 
Finally, notice that we do not know if the symplectic structure to is 

exact, but we argue that it is so because there is no trace on A~. 

5.3. The Case of A = A0 | Mn(C) 

Let us consider here the case of an algebra A0 = Ca(M) with (M 2m, to) 
being a symplectic manifold with local coordinates (qi, pj), i, j = 1 . . . . .  m, 
and with a symplectic 2-form given by 

too = dpi ^ dq i (192) 

The algebra A0 which is used to describe the Hamiltonian classical 
mechanics (Guillemin and Sternberg, 1984; Arnold, 1989) is a C*-algebra 
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of smooth functions on M equipped with a pointwise product " . "  and a 
Poisson bracket {, }e defined by 

{f, g}p = Of Og Of Og (193) 
Opi Oq i Oq i Opi 

for f, g c A0, and which satisfies the Jacobi identity and the Leibnitz rule 
with respect to the pointwise product " . "  of functions. 

On the other hand, we have already introduced a symplectic structure 
to on M,(C) defined by [see equations (169) and (170)] 

i 
{E, F}h = to(Ham(E), Ham(F)) = ~ [E, F]_ (194) 

with 

for E, F ~ M,(C). 

)  195, 

Now, the purpose of this subsection is to define an extension of the 
bracket (193) which would be appropriate also for the generalized functions 
which are in our case just M,(C)-valued functions on the symplectic manifold 
M. This generalized bracket will be denoted by {, }. 

Let a, b be two such generalized functions (E A) [see equation (134)]: 

a(q, p) = fO(q, p) | 1 + fk(q, p) | Ek 

b(q, p) = gO(q, p) | 1 + gk(q, p) | Ek (196) 

where fo, fg, gO, gk E Ao and { 1, Ek}, k E I = { 1 . . . . .  n 2 - 1 }, is a basis 
of Mn(C). 

The most general antisymmetric ad-invariant combination of the two 
brackets (193) and (194) is the following generalized bracket: 

{a, b} = ( a l { f  ~ gO]p q_ O t 2 { f i  gj}p.Kij) @ 1 

+ (OL3{f0,  gk}p  + Ot4{fk, gO}p + i x s { f i ,  gj}p.S}k 

+ ot6fi'g j" Cij k) @ E k ( 1 9 7 )  

where al  . . . . .  ol. 6 are some constant coefficients to be determined. 
Assuming that this generalized bracket obeys a Jacobi identity and using 

the fact that A0 is commutative and associative, and together with equations 
(79)-(83b), (86a), (86b), (153b), (156), (167b), and (170), we find that 

OL 2 = O~ 5 ~--- 0 ,  (Y'I = 0l-3 = OL4 = const r 0, ~6  = const r 0 
(198a) 
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Let us choose, for instance, 

~n = cx3 = or4 = 1 and Or. 6 = i (198b) 

then, the final and unique (up to a constant) expression of this bracket is 

{a, b} = {f0, gO}p ~ i + ({f0, gklp + {fk, gO}p 
+ ifi'gJ'Ciy k) | E~ (199) 

Because the elements of A = A0 | Mn(C) are just M~(C)-valued func- 
tions, we expect that the only bracket that can be defined on A is the commuta- 
tor [, ]_, exactly as in the case A = M~(C) (see Section 3.2). 

Effectively, we can easily verify that the Leibnitz rule with respect to 
the associative multiplication is not satisfied. On the other hand, we have 

{a, [b, c]_} = [{a, b}, c]_ + [b, {a, c}]_ (200a) 

and 

[a, {b, c}]_ = {[a, b]_, c} + {b, [a, c]_} (20Oh) 

which means that the generalized bracket {, } is a derivation of the Lie 
algebra A equipped with the commutator [, ]_ and vice versa. 

The Leibnitz rule with respect to multiplication can be recovered if we 
assume that the generalized functions take their values in the enveloping 
algebra J~n(C) of Mn(C), i.e., if we consider all the possible products of 
generators of the type Ei" Ej, El" Ej. Ek, etc., as new elements of the algebra 
(which now becomes infinite-dimensional), instead of being reduced to 
expressions linear in 1 and Ei. Then, the new bracket with functions whose 
expressions are linear in 1, El, Ei" Ej, Ei" Ej. Ek, etc., will be defined precisely 
in the way that ensures that the Leibnitz rule holds, but the price to pay is 
the infinite extension of our noncommutative algebra. 

6. MODULES, CONNECTIONS, CURVATURES, AND GAUGE 
THEORIES 

In a rigorous mathematical formulation, gauge theories are nothing else 
than descriptions of geometrical and dynamical properties of connections and 
curvatures in the appropriate fiber bundles over the space-time. The fibers 
F are often interpreted as internal spaces on which a given symmetry group 
acts transitively and effectively. 

In the same spirit, we should replace the internal space by the noncommu- 
tative geometry based on some associative algebra A. The advantage here is 
the absence of an infinite tower of excitations of the internal space, which 
now become discrete. 
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The central object of a gauge theory is the connection, or the covariant 
derivative induced by it. This latter is defined on the space of  sections of 
the corresponding fiber bundle. The set of these sections forms a module 
over the algebra of  C=-functions on the base space M with values in some 
representation of the structural group G. The property of the covariant deriva- 
tive that is most important is the Leibniz rule with respect to the (right-) 
multiplication in this module: 

Let + be a section, U a group-representation-valued function defined 
on the base space of the fiber bundle, and 17 the covariant derivative. Then, 
one has 

V(qbU) = (17(qb))U + r | dU 

Here, we shall use the analogy between the sections in fiber bundles 
and abstract moduli in order to construct the connections in noncommuta- 
tive geometries. 

6.1.  P r e l i m i n a r i e s  

Let M be a fight A-module for some associative *-algebra A with unit 
and Aut(M) the group of all module automorphisms of M. 

Recall that M is afinite projective A-module if there is another A-module 
N such that the direct sum M G N is a free A-module of finite rank. 

An element a of  A is said to bepositive if it may be written as a finite sum: 

a = ~ b* i. b i (201) 
i 

with bi c A and * is the involution of the algebra A. The set A + of all positive 
elements of A is a convex cone that we assume to be strict in the sense that 

A § n ( - A  +) = {0} (202) 

This property is typically satisfied for *-algebras of operators in Hil- 
bert spaces. 

A Hermitian structure on the right A-module M is an A-valued positive- 
definite Hermitian form (Connes, 1980) 

i.e., a sesquilinear mapping 

which satisfies: 
(a) Hermiticity: 

(+, t~) --+ h(qb, qJ) (203a) 

h: M • M--+A (203b) 

h(~a, qJb) = a*. h(d~, t~). b 

Vqb, t~ E M and Va, b ~ A. 

(203c) 
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(b) Pos i t i ve -de f in i t eness :  

h(~b, ~b) E A +, Vd~ E M (203d) 

h(+, ~b) = 0 ~ qb = 0 (203e) 

A right A-module M equipped with a Hermitian structure h will be called 
a H e r m i t i a n  A-module and the group of all A-module automorphisms U of 
M which preserves h, i.e., 

h(+ U, ~ U) = h(+, t~) (204) 

for any +, t~ ~ M is denoted by Aut(M, h). 

6.2. Gauges and Gauge Transformations 

Let A be an associative *-algebra with unit 1. Then, A p is naturally a 
right A-module, i.e., 

(al . . . . .  ap). a = (at" a . . . . .  ap. a) (205) 

V(al . . . . .  ap) E A p and Va E A. It is a Hermitian A-module if  one defines 
its Hermitian structure by 

P 

h((al  . . . . .  ap), (bl . . . . .  be)) = ~ a.~. bi (206) 
i=l 

Conversely, let H p be a free Hermitian A-module of finite rank p with 
Hermitian structure h. Then, one may construct an o r t h o n o r m a l  bas i s  {~}, 
i =  1 ,2  . . . . .  p, o f H  pas  

h(~i, I~j) = ~ij ]1 (207) 

for 
kth term 

ek = (0 . . . . .  1 . . . . .  0) ~ Hp and Vi, j = 1 . . . . .  p 

Such a basis is called a gauge.  
Given such a gauge, an element ~b of H p can be uniquely written as 

P 

~b = ~ ~.iai ( 2 0 8 )  
i=1 

with ai ~ A. Furthermore, if 

P 
, = Z , j b j  

j = l  

is another element of H p then [see equation (206)] 
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p 

h(+, ~) = ~ a'['bi 
i = l  

Thus, each gauge {ei} defines an isomorphism 

H p - - > A  p 

of Hermitian A-modules. 
A change of orthonormal basis 

such that 

(209) 

(210) 

6.3. Connect ions  and Associated Curvatures  

We define a connection on a right A-module M to be a linear mapping 

V: M ~ M @A O~er(A) (212a) 

which satisfies the Leibniz rule 

V(~ba) = (V(+))a + ~b | da (212b) 

for any ~b ~ M, a ~ A, and d the differential of the graded differential algebra 
ODer(A). This connection is a 12D-connection in the sense of Connes (1986). 

We define a Hermitian connection on a Hermitian A-module M to be a 
connection V on M which satisfies 

d[h(+, ~)] = h[V(~b), ~) + h(qb, V(+)) (213) 

Vcb, t~ E M and h the Hermitian structure on M. 

~i = ~j Ui (21 lb) 

will be naturally called a gauge transformation. 
Such a gauge transformation is an element of  

Mp(A) = A Q Mp(C) (211c) 

and the set of all of  these unitary elements forms a group Gp: The group of 
gauge transformations. 

Moreover, it is easy to deduce from equation (21 lb) that any orthonormal 
basis, or gauge, of A p is of the form ~ U for a unique U ~ Gp. 

In general, if  (M, h) denotes a Hermitian A-module and Aut(M, h) the 
group of all A-module automorphisms U of M which preserves the Hermitian 
structure h [see equations (203) and (204)], then U is called a gauge transfor- 
mation and Aut(M, h) the gauge group. 

U: {ei} ---> {~i} (211a) 
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Let us remark that the difference 17 - 17' of l'~o-connections on M is 
also a homomorphism of right A-modules in view of Born et al. (1926), and 
that (Hermitian) connections always exist on a finite projective (Hermitian) 
A-module M (Connes, 1986). 

Following Connes (1986), one may extend the connection V into a linear 
mapping of M @A I~D~(A) into itself: 

V: M @a ~"~Der(A) ~ M @A ~-~Der(A) 

by setting 

17(+ | a)  = (V(~b))a + ~b | da  (214) 

for any qb ~ M and ot ~ l~Ver(A)- 
If we consider the linear mapping 

Vz: M ---) M | ~'~2er(A ) (215a) 

then we have 

Vz(~ba) = (VZ(~b))a (215b) 

E A. Thus, 172 is a right A-module homomorphism 

or 

c~* = - a  (218b) 

The quantity a ~ Mp(l'~ler(A)) will be called the component  of V in the 
gauge ~ [equation (216)]. Conversely, each element a ~ Mp(f~er(A)) will 
represent the component in a gauge e of a unique connection I7. 

for any ~b ~ M and a 
which will represent the curvature associated with the connection V. 

Let us now consider, as explained in Section 6.2, a free Hermitian right 
A-module of finite rank Ap equipped with a canonical basis denoted by 

= (~1 . . . . .  %) (216) 

and let V be a connection on AP. Then (see equation (212b)] 

17(~i) = Ej (~ OL 31 (217a) 

for i = 1 . . . . .  p and a~ ~ O~er(A), or, in a compact way, 

V(~) = ~ | a (217b) 

where a = (a~) ~ Mp(l"~er(A)) --- O~er(A) | Mp(C)), i.e., a is a p • p 
matrix whose entries are differential 1-forms. 

Furthermore, V is Hermitian if and only if [see equation (213)] 

( ~ )  = -c~j (218a) 
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Similarly, one can define the component of  a connection V in an arbitrary 
gauge ~ [see equation (21 lb)] 

with 

It is given by 

= eU (219) 

V(~) = ~ | 13 (220a) 

= U - l o s  + U-IdU (220b) 

where a is the component of V in the gauge e. 
Here, one may consider the component 13 as a component in e of another 

(unique) connection denoted V u, i.e., 

V u(e) = e | 13 (221 a) 

The mapping 

7 ---> V v (221b) 

with U ~ Gp is a right action of the group Gp of gauge transformations on 
the space of connections on A n . 

The connection 7 u is Hermitian if and only if 7 is Hermitian. The set 

{VU/U ~ G~} 

will be called the gauge orbit of V. 
In general, if  M is a right A-module, then the group Aut(M) acts on the 

affine space of all connections on M via a mapping (221b) with 

V tJ(+) = U-~V(+ U) (222) 

for ~b e M and U ~ Aut(M). With the same formula, the group Aut(M, h) 
acts on the space of Hermitian connections. 

In the same way, the curvature V 2 is expressed in the gauge e as 

VZ(IE) ~--- ~ @ ~'~ (223a) 

where the component f~ of the curvature V 2 in the gauge e is given by 

f~ = da  + a ^ a e Mp(D~er(A)) = ~2er(A ) | Mp(C) (223b) 

and the operator d acting on the algebra ~Der(A) | Mp(C) is defined by 

d(a  | E)  = dot | E (224) 

VOt ~ ~'~Oer(A)and VE ~ Mp(C) .  
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If  ~ is the component in a gauge e of the curvature 7 2, then the 
component in ~ of the curvature (Vu) z corresponding to the connection V U 
is 0 = U-If}U, i.e., 

(~7U)2(~) = ~ ~ O ~-" ~ Q (U-I~-~U) (225) 

Let us now discuss the case of fiat Hermitian connections on a free 
Hermitian A-module A p. In general, a connection is called a flat connection 
if its associated curvature vanishes. Thus, a l}D-connection V on A p with 
component oL in a gauge ~ is flat if and only if 

I} = dot + ct ^ ct = 0 (226) 

If  U ~ Gp, then V v is fiat if and only if V is flat. For each gauge 

= E U -  1 (227a) 

with U E Gp, there is a unique connection Vt such that 

v~(~) = o 

Its component in the gauge r is U-ldU, so one has 

v~ = v ~  

(227b) 

(227c) 

and it is a flat Hermitian connection. These connections V~, U E Gp, will 
be called pure gauge connections. The set of  pure gauge connections is a 
gauge orbit of  fiat Hermitian connection on AP. 

In general, if  M is a right (Hermitian) A-module and Aut(M) [Aut(M, 
h)] its associated gauge group, then the set of  (Hermitian) connections V 
with zero curvature, i.e., V 2 = 0, is invariant by Aut(M)[Aut(M, h)]. 

7. E X A M P L E S  

7.1. The Limit  Case  A = A0 

For a review of the usual commutative case see, for instance, Kobayashi 
and Nomizu (1963), Poor (1981), and Choquet-Bruhat and de Witt-Morette 
(1982). Here, we just make the remark that a finite projective (Hermitian) 
C~(M)-module M is the module of  smooth sections of a smooth (Hermitian) 
vector bundle over M and a (Hermitian) connection on such a module is a 
(Hermitian) connection on the corresponding (Hermitian) vector bundle in 
the usual sense. 

Moreover, if M is simply connected, then there is at most one orbit of  
fiat Hermitian connections on a finite projective A0-module. 

These statements are not generally true in the case of  noncommutative 
algebras A. Here, we will treat in some detail the examples of Mn(C) and A0 
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| Mn(C) following the general procedure described below. We also give some 
physical interpretations and present new models of gauge theory proposed by 
Dubois-Violette et  al. 

For this purpose, let us recall here the definition of the U(n)-Yang-Mills 
action and in particular the Maxwell [ U(1)-] action. 

The Maxwell action is an action for connections on a U(1)-principal 
bundle over R m. It is also an action for Hermitian connections on a Hermitian 
vector bundle of rank 1 over R". Finally, since R"  is contractile, it is an 
action for Hermitian connections on the free Hermitian finite projective 
C~(Rm)-module of rank 1. Let V be such a connection with component 

oL = A ( x )  = A~(x)  clx~ ~ ~er(C~(Rm)) = [~l(Rm) 

(the so-called Maxwell potential), and let V 2 be the curvature of V with 
component 

1 dx~ dx  ~ d a  = F(x)  = ~ F ~ ( x )  ^ = 

(the so-called electromagnetic field), where x r ix ~ {0, 1 . . . . .  m - 1 }, are 
the canonical coordinates of the m-dimensional Euclidean space-time R m 
equipped with the metric 

ds 2 = ~ (dx ~)2 

Then, we have 

F ~ ( x )  = O~A~(x) - O~A~(x) 

and the Maxwell action S(V) for V is given by 

if s ( v )  = IIV2112 = - ~  Tr[Fr dmx 

This action is gauge invariant, positive, and vanishes only on the orbit 
of pure gauge connections. Two connections in the same gauge orbit are 
considered physically equivalent. 

Similarly, the U(p)-Yang-Mills action is an action for Hermitian connec- 
tions on the free Hermitian C~(Rm)-module of rank p. If V is such a connection 
with component 

= A~(x)  dx  ~ ~ ~l(Rm) @ Mp(C) 

and V 2 its curvature with component 

1"~ = F(x)  

= O a  

1 
= -~ {O~A~(x) - O~A~(x) + [A~(x), A~(x)]} dx ~ ^ dx" 
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then the U(p)-Yang-Mills action S(V) for V is given by 

if s ( v )  = IIV211 z = - ~  Tr[F~v(x)f~V(x)] dmx 

which is again gauge invariant, positive, and vanishes only if V is a pure 
gauge connection. For p = 1, we recover the Maxwell action. 

7.2. The Case of A = Mn(C) 

Let M be a right M.(C)-module (Dubois-Violette et al., 1990a; Dubois- 
Violette, 1990). A Hermitian structure h on M is an Mn(C)-valued, positive- 
definite Hermitian form h((b, ~) ~ Mn(C) for ~b, ~ ~ M, which satisfies [see 
equations (203)] 

h(d~A, +B) = A*h(d?, t~)B (228) 

VA, B ~ M.(C) and with A* being the Hermitian conjugate of A, i.e., 

A* = A t (229) 

The pair (M, h) will be called a Hermitian M.(C)-module. 
Since connections always exist on projective modules of finite rank, we 

shall restrict our considerations to the simplest Hermitian M.(C)-module, 
namely the free Hermitian M.(C)-module of rank 1, which we denote by H. 

A Hermitian I'to-connection on H is a linear mapping 

V: H ~ H @ I~er(M,(C)) (230a) 
Mn(C) 

satisfying the following two properties: 

V(+A) = (V(,I,))A + '1' | dA (230b) 

d[h(+, ~)] = h(V(,l,), ~) + h(+, V01,)) (230c) 

'q'~b, ~ e H and VA e M,(C). 
An element ~ of H such that 

h(r ~) = 1 (231a) 

will be called a unitary generator of H or a gauge. Given such an element, 
we can make the following identification: 

and we also have 

VA, B m Mn(C). 

H = eM.(C) (231b) 

h(F_A, ~B) = A*B (231c) 
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Now, if U e Mn(C) is a unitary matrix, then the transformation 

U ---> e U (232) 

is a bijection from the unitary group U(n) onto the set of unitary generators 
of H. Such a change 

---> ~ = e U (233) 

of unitary generators is called a gauge transformation. The group of gauge 
transformations is therefore U(n). 

Let V be a Hermitian connection on H. Given a gauge e, any 4) E H 
may be uniquely represented as 

~b = ~B (234a) 

with B ~ M,(C). Thus, in view of the definition (230b), one has 

17(qb) = (17(e))B + ~ | dB (234b) 

where 

V(e) = e | ct (234c) 

for a unique ~x E ~er(Mn(C))  satisfying the Hermiticity condition 

oL* = -e~ (234d) 

in view of the Hermiticity property of V [see equations (218)]. 
The quantities B and e~ in equations (234a) and (234c) will be called 

the components in the gauge �9 of + and t7, respectively. Under a change of 
gauge [see equation (233)] induced by a unitary matrix U, these components 
transform as follows: 

B ---> U-IB (235a) 

~x --~ U-ltxU + U-IdU (235b) 

We can easily see that what is presented here is nothing other than 
the noncommutative analog of the usual notions of gauge theories. Hence, 
classically the quantity B corresponds to a section of some fiber bundle with 
a structural group to which U belongs, and et represents a local expression 
of the usual connection 1-form. More precisely, if we remember that Mn(C) 
is the analog of A0 = C~176 and so U(n) is the analog of U(1)-valued functions 
on M, then our Mn(C)-module H provides us with the noncommutative analog 
of electromagnetism. Namely, B and ~x are, respectively, the noncommutative 
analogs of the component of  a charged scalar field and Maxwell potential in 
a given gauge. Nevertheless, there are some differences. 



856 Djemai 

i.e., 

Given a gauge r there is a unique connection V, on H such that 

V,(e) = 0 (236a) 

V,(eB)  = e Q dB (236b) 

VB ~ M,(C). The component of  V, in e vanishes and its component in an 
arbitrary gauge ~ = e U is given by 

eL = U - t d U  (236c) 

Conversely, if the component c~ of a connection V on H in a gauge 
is given by equation (236c) for some U ~ U(n), then one has 

V = V~ (236d) 

with ~ = e U  -1. The connections V, satisfying equations (236a) and (236c) 
when E runs over the set of  unitary generators of  H will be called pure gauge 
connections.  They are automatically Hermitian connections on H. 

As in the usual case, if  V and V' are two connections, one has 

(V - V')(d?B) = ((V - V')(d?))B (237a) 

so V - V' is a right-module homomorphism. In terms of components, this 
means that c~ - od transforms homogeneously: 

a - c~' ---) U - l ( a  - a ' ) U  (237b) 

under a gauge transformation induced by U ~ U(n): 

e ~ e U  

where oL (resp. a ' )  is the component of  V (resp. V')  in a gauge e. 
The set of  connections on H is an affine space; however, in this case 

there is a natural origin V 0 in this space defined by the following lemma. 

Lemma 3. Define the linear mapping 

V0: H ~ H (~) ~'~ler(Mn(C)) 
Mn(C) 

by 

V0(~b) = ~b | ( - i 0 )  (238a) 

Vqb e H and where 0 is the canonical invariant element of  Oler(Mn(C)) 
defined in Section 3.2.2. Then, Vo is a Hermit ian  connect ion on H which is 
gauge invariant  in the sense that 
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V U ~ U(n). In fact, 

and 

Vo(eU) = Vo(e) (238b) 

Vo(e) = e | ( - i 0 )  (238c) 

U - 1 ( - i 0 ) U  + U-ldU = - i 0  (238d) 

V U e U(n). Let V be a gauge-invariant connection on H, then one has 

V(~b) = ~b | [ - i ( 0  + Xk0~)] (238e) 

for some kk E C, k E I = { 1, 2 . . . . .  n 2 - 1 }. Furthermore, V is Hermitian 
if and only if kk e R, Vk ~ I. 

Proof. In terms of 0 = EkO k, one has for any B e Mn(C) [see equa- 
tion (106a)] 

dB = i[0, B] (239) 

This implies that 

Vo(~bB) = (Vo(~b))B + + | dB (240) 

so Vo is a connection, in view of equation (212b), which is obviously Her- 
mitian because ( - i0)*  = - ( - i 0 ) ,  in view of equation (218b). 

Its component in any gauge is, by definition, - i 0  and one directly 
verifies U - l ( - i 0 ) U  + U-ldU = - i 0  by using equation (239). Let V be any 
connection on H and let - i ( 0  + 13) e ~-~ler(Mn(C) ) be its component in a 
gauge e. Then, its component in a gauge eU, U e U(n), is - i ( 0  + U-~13U). 
So, V is gauge invariant if and only if 13 = U-t13 U, V U  E U(n), which 
implies that 13 = k~O k, with kk e C, Vk E I. Finally, V is Hermitian r 13" 
= 13, i.e., kk ~ R, Vk e I. �9 

Finally, let us first remark that the connection V0, which will be called 
the canonical connection on H, cannot be a pure gauge connection, i.e., there 
is no U ~ U(n) such that - i 0  = U-1dU, since it is gauge invariant (see 
Lemma 3). 

Second, V0 is gauge invariant and Hermitian, but it is not unique under 
these considerations, since these properties are also true if one replaces 0 by 
0 + kk0 k for hk ~ R. However, V0 is completely determined by the fact that 
it is the only flat connection which is not a pure gauge connection. 

Let us now define the curvature associated to a connection V on H. One 
extends the action of V defined above [see equation (230a)] such that 

V: H ( ~  ~'~Der(Mn(C))---~H ~ )  ~-~Der(Mn(C)) (241a) 
Mn(C) Mn(C) 
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by setting 

V(+ | or) = (V(+))a + r | de~ (241b) 

V~b ~ H and Vc~ ~ Oo~r(M,(C)). Then, curvature of V is the mapping 

V2: H ---) H (~) ~2Der(M,(C)) (242a) 
M n(C) 

such that V 2 is a right 
(215b)], i.e., 

V2(+B) = (V2(qb))B (242b) 

'v'qb ~ H and VB ~ Mn(C)). 
In a given gauge s, the component l~ of V z is defined by 

V2(e) = ~ | l'l = ~ | (de~ + ot ^ o0 (242c) 

where ot is the component of the connection V in the gauge e. 

M,(C)-module homomorphism [see equation 

Under a gauge transformation e ~ ~ = e U, U E U(n), the component 
1~ transforms homogeneously: 

1~ ---) U-q~U (243) 

The pure gauge connections areflat connections, i.e., with zero curvature. 
Indeed, if [see equation (236a)] 

V,(e )  = 0 

then [see equation (236b)] 

Ve(~.B ) = e | dB 

so, in view of equation (241b), 

V~(eB) = Ve(e)dB + �9 Q d2B = 0 (244) 

VB ~ Mn(C). 
This result is well known from the classical case A = Ao. However, in 

the noncommutative case A = M,(C), flat connections which are not pure 
gauge connections exist. Indeed, as remarked above (see the remarks after 
the proof of Lemma 3), the canonical connection is the only gauge-invariant 
flat connection which is a pure gauge connection. 

In fact, if V is a gauge-invariant connection, then [see equation (238c)] 

V(~b) = + | [ - i (0  + K~0~)] 

for hk e C, in view of Lemma 3. So, the flat connection condition 
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V2(qb) = qb | [--id(hkok)] = 6 | [iCkmhkO t ^ 0m] = 0 (245a) 

is equivalent to 

hk = 0, ~/k ~ I (245b) 

and so, in view of equation (238a), 

V - V0 (245c) 

On the other hand, equation (106b) is equivalent to 

V 2 = 0 (246) 

Thus, V0 is a flat connection and it is the only gauge-invariant connection 
which is a flat one. We obtain the following result. 

Proposit ion Z Let V be a Herrnitian connection on H with vanishing 
curvature, i.e., ~ 72 = 0. Then, either V is a pure gauge connection V, or V 
is the canonical connection V0. 

Proof. Choose a gauge ~. Then, V(e) = ~ | et with ct* = -oL and Vz(fi) 
= e | ~ with 1} = dot + ot A Or. Let us choose the representation in which 

ot = [3 - i0 (247a) 

with [3 = Bk0 k, Bk ~ M,(C), i.e., we choose the l - form [3 which measures, 
in some sense, the deviation of a from the canonical connection - i 0 .  Now, 
the expression for f t  reads 

1 0m = doL + Ot A OL = d[3 + [ 3 ^ [ 3 - - i ( 0 ^ [ 3  + [3 A O) = -~ FkmO k ^  

(247b) 

Therefore 

where 

Fkm = [Bk, Bm] -- ClkmBl (247c) 

~'~ = 0 r Ink, Bm] = ClmBl (247d) 

Thus, either Bk = 0 or Bk = iEk [because it satisfies the commutation 
relations of  a basis ofsu(n);  see equation (83a)]. The first solution corresponds 
to a trivial representation of su(n), which means that V is the canonical 
connection V0, and the second corresponds to a representation of su(n) that 
is unitarily equivalent to the fundamental representation of su(n), i.e., 

Bk = U -  I(iEk) U (247e) 
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k/k ~ l, for some U E U(n), which reads 

ec = U - I ( i O ) U  - iO = U - l d U  (2470 

which means that V is a pure gauge connection V~, with ~ = ~ U-~. �9 

The presence of  these two distinct gauge orbits of vanishing curvature 
is something new as compared with the usual gauge theories. 

Since our M,(C)-module H provides us with the analog of electromagne- 
tism as remarked above, it is natural to introduce the analog of the Maxwell 
action as follows. Let V be a Hermitian connection on H, ec its component 
in a gauge ~, and 1~ = dec + ec ̂  ec the component of the associated curvature 
V 2 in ~ with f~* = -1~. The expression 

( n l n )  (248a) 

is independent of the choice of e. 
Using equations (247b) and (247c), we get 

1 
s = liVZll z - -  Tr[Fkm. F ~ ]  

k,m 

= 1 ~ Tr{([B~, Bm] - C~,nBl) 2 } 
an k,m 

= 1 ~ Tr{([Bk, Bin] - C~mBt)([B ~, B m] - c ~ m n J ) } ( 2 4 8 b )  
an k,m 

Then, IlVZll 2 >-- 0 and its absolute minima correspond to V z = 0 and 
consist of two distinct gauge orbits: the pure gauge connections and the 
canonical connection V0, which is a singular gauge orbit reduced to a point. 

The notation used here is clearly justified since S = [I VZll= represents the 
purely noncommutative analog of the classical action of the electromagnetism. 

Finally, we remark that in the moduli of higher rank, the number of  
such minima is higher than two, as is the case for our free Hermitian M,(C)- 
module H of rank 1, and grows rapidly with the rank of the considered 
M,(C)-module M. 

Up to now, we have discussed the case of H. Let us now discuss the 
case of an arbitrary right M,(C)-module M. Following Section 6.2, each 
gauge {e~} gives an isomorphism of Hermitian right finite projective A- 
modules [see equation (210)]. Here, A = M,(C), so the only way to build a 
finite projective right Mn(C)-module is to consider a tower of C' ,  i.e., the 
space MKn(C) of K • n matrices with a right action of Mn(C ). In fact, in 
this case, one has 
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Aut(MK.(C)) = GL(K) 

with left matrix multiplication. 
The module MK.(C) is naturally equipped with a Hermitian structure: 

h(~b, t~) = ~b*t~ (249) 

where +* is the n • K matrix Hermitian conjugate to +. The gauge group 
is then the unitary group U(K) C GL(K). 

In this case, there is also a natural origin Vo in the space of connections 
given by (see Lemma 3) 

V0(~b) = ~b | ( - i0 )  (250a) 

and (250b) 

V0(~bB) = V0(~b)B + ~b | dB 

with ~b ~ Mr,(C), B ~ MK(C) and where 0 is the canonical invariant element 
of ~'~er(Mn(C)). 

This connection is Hermitian and it follows from equation (106b) that 
its curvature vanishes [see equation (246)]: 

Vz(qb) = ~b | [d(- i0)  + ( - i 0 )  2] = 0 (250c) 

Any connection V is of the form 

V(~b) = V0(~b ) + ~b | a = Vo(~b) + akd~ | O k (250d) 

where A = AkO k, with Ak E Mh.(C). 
The connection V is Hermitian if and only if the A k are anti-Hermitian: 

A~ = --Ak (250e) 

The curvature of V is given by 

1 0k 0t V2(~b) = d~ | F = ~ Fkz+ | A (2500 

with 

1 OS = 1 F = "~ FktO k A ~ ([Ak, At] - CknlAm)O k A 01 (250g) 

V+ ~ Mxn(C) and Ak E Mh-(C). Here, the symbols A and F are used to 
parallel the usual notations in gauge theories. 

Thus, V z = 0 if and only if the A~ form a representation of su(n) (or 
sl(n)) in C x. Two such connections are in the same orbit of Aut(Mr,,(C)) if 
and only if the corresponding representations of su(n) are equivalent. This 
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implies that the gauge orbits of flat Hermitian connections are in one-to-one 
correspondence with the unitary classes of representations of  su(n) in C r. 
For instance, if n = 2, these orbits are labeled by the number of  partitions 
of the integer K. 

7.3. The Case of A = Ao | Mn(C) 

7.3.1. The Analogs of  the Euclidean Maxwell and Yang-Mills Theories 

From the isomorphism (210) of Hermitian fight finite projective A- 
modules of  rank p, with A = C=(M) | Mn(C), a gauge transformation U is 
a unitary element of Mp(A) = A | Me(C) = C=(M) | Mp,(C). So, U is a 
U(np)-valued function on the m-dimensional manifold M (Kerner, 1990; 
Dubois-Violette et al., 1990b; Dubois-Violette, 1990). 

On the other hand, we know that in the commutative case where A = 
A0, the pure gauge connections are the only flat Hermitian connections on 
Ag, and we have shown in Section 7.2 that in the case of  A = M,(C), the 
orbits of fiat Hermitian connections are in one-to-one correspondence with 
the unitary classes of representations of su(n). 

Now, we will study the gauge orbits of Hermitian flat connections on 
a fight Hermitian finite projective A-module A p, where A = A0 | Mn(C), 
w i t h n -  2 a n d p - -  1. 

To construct Hermitian connections on A p, it is necessary and sufficient 
to construct anti-Hermitian components in a canonical basis ~ of AP [in view 
of equation (218b)]. Then, let R~, k ~ I = { 1 . . . . .  n 2 - 1 }, "q ~ J = {0, 
1 . . . . .  N(n, p) }, be a set of  anti-Hermitian elements of Mn(C) | Mp(C) = 
M,p(C) such that 

R ~ = 0 (25 la) 

R~ = iEk | 1 (251b) 

[R~, R~] = C~R~m (25 lc) 

V'q E J and k, l ~ I [i.e., R ~ is a representation of su(n) in C n | CP], and 
such that, if {Rk} are n z - 1 anti-Hermitian elements of  Mnp(C) satisfying 

[Rk, Rt] = C'k"tRm (252) 

Vk, l ~ L then there is a unique -q E J and a unitary V ~ Mnp(C) such that 

R~ = V-~R~V (253) 

Vk ~ I. This means that the set {R~}, "q ~ J, is a complete set of mutually 
inequivalent anti-Hermitian representations of su(n) in C n | Ct'. 
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Then, the connections V on AP with components 

= (R~ - iEk ~ 1)0 k ~ Mp(~er(A)) = [~lDer(A)~ Mp(C) (254) 

,q 

in a gauge e are Hermi t ian  and we will denote them by V. 
The following theorem results. 

,q 

Theorem 1. (a) The connections V are flat Hermitian connections and, 

if -q 4: ~, the gauge orbits of V and of V are distinct. 
(b) A Hermitian connection V on A p is flat if and only if it is an element 

of the gauge orbit of V for some "q ~ J, i.e., V -- V u with U ~ Gp and -q 
~ J .  

Proo f  (a) Let V be a Hermitian connection on A p with a component to 
in a given gauge e. Let to be given by 

to = ~ + (Bk -- iEk | 1)0 k (255) 

where 13 is a 1-form on M with values in the anti-Hermitian elements of 
M,/,(C) and where Bk are functions on M with values in the anti-Hermitian 
elements of Mnp(C). Then, one has 

l~ = dto + to A to 

1 
= d113 + ~ A f5 + (dlBk + [~, Bk])0 k -b ~ {[Bk, BI] - -  C~lBm}O k A 0 l 

(256) 

Then, V is flat (i.e., lq = 0) if and only if 

d~[3 + 13 ^ 13 = 0 

dl Bk + [fS, Bk] = 0 

and 

(257a) 

(257b) 

(257c) 

[Bk, Bt] = C~Bm 

Vk, l ~ I and where dl is the unique antiderivation of ~Der(A) extending the 
exterior differential of ~(M) such that dl(l-lDer(Mn(C)) = 0. It follows that 
every connection V on A p with component to given by equation (255) and 
satisfying equations (257) is a flat Hermitian connection on A p. In particular, 

the connections V are flat connections. 
If 

V = VU = U-1VU,  for ~ ' q  
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the unitary element U of Me(A) = A0 | Mnp(C) may be chosen to be constant 
and then 

= U-1R V 

but this contradicts the statement that {Rn}, -q �9 J, is a complete set of 
mutually inequivalent anti-Hermitian representations of su(n) in C n | C p. 

Then, if ~ r ~1, the gauge orbits of the two flat Hermitian connections V 

and V are distinct. 
(b) Assume that V is a flat Hermitian connection. Then, the relation 

(257a) implies that [3 is a pure gauge connection, i.e., 

[3 = U- ld1U 

and the relation (257c) means that [see equation (251c)] 

Bk = V-~R~V 

for some rl �9 J and U, V �9 Gp. Furthermore, equation (257b) implies that 

dI(UV-1R~VU -a) = 0 

.q 

So we can choose U and V such that U = V. This implies that V = V u. �9 

Finally, let us make the following remarks. 
First, under a gauge transformation 

V ---> V v (258a) 

U �9 Gp, the 1-form 13 and the functions Bk defined above transform as 

[3 ---> U-l f3U + U - l d I U  (258b) 

and (258c) 

Bk ---> U-1BkU 

respectively. Then, the Bk transform homogeneously. In fact, this explains 
why the components cr and oJ have been chosen to be of the form given by 
equations (254) and (255), respectively. This is deeply tied to what is described 
in Lemma 3 (see Section 7.2) concerning matrix algebras. 

Second, one has 

1 
V = V~ (259) 

So, the pure gauge connections on A p are the elements of the gauge 

orbit of V. 
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The third remark is relative to the classification of gauge orbits of  fiat 
Hermitian connections on A p. One has: 

1. For p --> 1, n -> 2, N(n, p) --> 1, there are at least two gauge orbits, 
0 I 

namely the orbit of V and the orbit of 17. 
2. F o r p  = 1, n >- 2, N(n, 1) = 1, there are only these two gauge orbits. 

Lastly, we remark that formulas like (256) appear naturally in the double- 
bundle structures (Kerner et al., 1987). 

At this point, it is straightforward to generalize the classical Maxwell 
action and, in general, the U(p)-Yang-Mills action [see Section 7.1 for the 
case n = 1, i.e., A = A0 = C=(R")] for an arbitrary positive integer p - 0 
by considering the associative algebra A = C=(R ") | Mn(C) with n -> 2. 

Let x~, ~ e {0, 1 . . . . .  m - t }, be the canonical coordinates of the 
m-dimensional Euclidean space-time R m equipped with the metric 

ds 2 = ~ (dx ~)z (260) 

It is natural to generalize the Euclidean Maxwell action (see Section 
7.1) for an arbitrary positive integer n as IIV2112 on the Hermitian connection 
V on the free Hermitian A-module of rank one, and so for the U(p)-Yang-Mills 
action in the case of a free Hermitian A-module of rank p. 

Let to E f~er(A) and ~ E [~2er(A ) be the components of V and V 2, 
respectively; then 

IlVZll ~ = ( a l a )  = (do, + ~o A o, ldo~ + o~ A ~o) (261)  

where the scalar product o n  ~ ' ~ D e r ( A )  is defined in Section 3.3 [see equa- 
tions (150)]. 

Writing again oJ as [see equation (255) for p = 1] 

(D = 0/. 1 -t-" ( ~ 2  - -  i0) = A~(x)dlx  ~ + p(At(x) - iEt)0 k (262) 

with anti-Hermitian n • n matrix-valued functions A,(x) ,  v ~ {0, 1 . . . . .  m 
- 1 }, and Ak(x), k e { 1, 2 . . . . .  n 2 - 1 }, the general ized Maxwel l  action 
S(V) reads 

1 I Tr[F~F~"]  d'nx s ( v )  ---IIV2112 = -4---n 

; II 
1 Tr[F~iFr~i] dmx - -~n Tr[FtIFk~] 

2n 
d'nx (263) 
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with p some positive constant of dimension of length [see equation (146)], and 

1 1 0 l (264a) = -~ F ~ d l x  ~ A dlx ~ + pF~idlx ~ A 0 i + ~ p2Fkl0k A 

F ~  = Or - a~A~ + [A~, A~] = D~A~ 

= (o~a ~  o,,a ~ 1 7 4  I + (O~Akv-- cg~,A~- " k i j tC i jA .A~)  | Ek (264b) 

Fr = OpA i + [A~, Ai] -- V ~ A  i 

= O v A  ~ 1 7 4  + (O~Aki - " k ~ s tC~A~Ai)  | Ek (264c) 

Fkt = [Ak, At] - 1 CiklAi : DkAt 
P 

( ) 0 i _ t C ~ q A k A i  P = A i Ckl (~ 1 -[- �9 r p q _ 1 C~lA r ~ Er (264d) 

Under a gauge transformation V ---> V v, U E Gl, the A~, Ai, and F~i 
transform, respectively, as 

A~ ---> U-1A~U + U-xO~U (265a) 

A i ""> U - I A i  U (265b) 

F~i ---> U-J F~i U (265c) 

The action S given by equation (263) is gauge invariant, positive, and, 
for n -> 2, vanishes on the gauge orbit of (A~ = 0, Ai = 0) and the gauge 
orbit of (A~ = 0, Ak ---- (i/p)Ek). 

One can also obtain the same results by another method, as follows. 
One has (see Lemma 2 in Section 3.3.1) 

Der(A) = {Der[C~(R m) | 1]} E) {C~(R m) | Der[M,,(C)]} (266a) 

i.e., all vector fields in the space Der(A) are of the form [see equation (135)] 

X = X~(x)0~ | 1 + Xk(x) | ad(iEk) (266b) 

where X~(x), • E C~(R m) with Ix E {0, 1 . . . . .  m - 1 }, k ~ {1, 2 . . . . .  
n 2 - 1}. 

We have also [see equation (137)] 

~-~Der(A) = [)Der(C~(Rm)) ~ ['~Der(Mn(C)) (267a) 

where the differential d of lqDer(A) is given by 

d = dl + pd2 (267b) 

where dl is the differential along R m and dE the differential of ~'~Der(Mn(C)). 
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To define a connect ion on our module,  we need to define the covariant  
derivative D on f~l~r(A). This  method consists in assuming that D reads 

D = D1 + pD., + p2D 2 = d + ct ^ �9 (267c) 

where  D1 (respectively, D2) is the covariant derivative on the commutat ive 
part l"~l(g m) [respectively, on the noncommutat ive  part  ~'~er(Mn(C))] o f  
~D~r(A), given by  

D1 = dl + cq A �9 (267d) 

D2 = d2 + ctz ^ " (267e) 

where  ctl (respectively, a2) is the component  of  the commuta t ive  part  VI 
(respectively, of  the noncommuta t ive  part V2) of  a connect ion V = �9 | et 

O~r(A),  and Dm is an expression which mixes  the commutat ive  part with 
the noncommutat ive  one (we will call it the mixing part) and which will be 
defined below. 

The  componen t  et in some gauge �9 of  any l - fo rm [element of  
lql~r(A)] may  be written as 

A -- et = oq + P~2 = A~(x) d l x  ~ + pAi(x)O i (268a) 

and is defined on the free Hermit ian finite project ive A-module  Mp(A) = 
C=(R ")  | M.p(C).  The  quantities A~(x) and Ai(x)  read 

A.(x)  = A~ | i + A~(k) | Ek (268b) 

Ai(x) = A~ | i + A~(x) | Ej (268c) 

where  A~ Ak(x), Ai~ and A~(x) ~ C=(Rm). 
Let  

V(�9 = �9 | ct (269) 

be a Hermit ian connect ion on this module with componen t  et given by (268). 
Then, the componen t  ~ of  the associated curvature 

VZ(~) = �9 | 12 (270) 

is given by 

1 a o - b  F -- 12 = D a  = dc~ + et A et = ~Fabo" ^ = Fi + pF,, + p2F 2 

(271 a) 

with a. b . . . .  = (Ix. k). (v. i) . . . .  ; Ix. v ~ {0. 1 . . . . .  m - 1}; k. i E 
{1,2 . . . . .  n z -  1} ; and  

F1(x) = �89 r A d t x "  

= �89176 | I + F~,.(x) | Ekldtx  ~" A d t x  ~ (271b) 
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F m ( X  ) = F ~ i ( X ) d l  Xl'~ A 0 i 

= [F~ | 1 + FJ i (x )  | Ej] d j x  r~ ^ 0 i (271c) 

V2(x) = �89 k ^ 0 t 

= �89176 | 1 + F ~ ( x )  | Em]O k ^ 0 t (271d) 

Using the relations (79)-(84), (96b), and (101) and the property 

o'a  ^ o 'b = - -o 'b  ^ o 'a  (272) 

V a  = (bt, k)  a n d b  = ( v , l ) ,  with Ix, v ~ { 0 ,  1 . . . . .  m - 1}  a n d k ,  l E 
{1,2  . . . . .  n 2 -  1 } , w e g e t  

F~ = Or176 - O,A~ (x) (273a) 

Fk, , (x)  = o r  o, ,a~(x)  �9 k i j - -  - -  l C i j A ~ ( x ) A v ( x )  (273b) 

V~ = o~a~  (273c) 

v t k ( x )  = Or - " l r s 1CrsA~ (x) Ak (x) (273d) 

F~ = - A  ~ (273e) 

F~'}l(X) = - "  . . . . . .  c~tam(x)  (2730 t C ~ A k ( x ) A t  (x) 1 
P 

It is easy to verify that 

Fl(x )  = Dl~Xl 

= d l a ~  + a l  ^ ~xl 

= �89 d l x  ~ A d l x "  

= I{O~A,,  - O,,A~ + [Ao., A~]} d l x  ~ ^ d l x "  

= �89 d i x  ~ ^ d lX"  (274a) 

Fro(x) =-- Dm(al ,  c~2) 

= F~k(x) dlX t~ ^ O k 

= O~Ak(x) d l x  ~ ^ 0 ~ + 20t I ^ (Or. 2 --  i0) 

= {0r - [Ar Aj}  d l x ~  ^ 0 k 

= ~ A k ( X )  d l  x ~  ^ O k (274b) 
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F2(x ) = D2~ 2 

= d2ct2 + ct2 A ~2 

= �89 k ^ 0 l 

= l{[A~'Al] -lCiktAi} 
= �89 ~ ^ 0 t (274C) 

where 0 = EkO ~ is the canonical invariant e lement  of f~D~r(Mn(C)). 
Then, the connection V [see equation (269)] is a f la t  connection, i.e., 

F - 0, if and only if [see equations (271a), (273), and (274)]: 

El(x) = 0 r F ~ ( x )  = 0 (275a) 

Fro(x) = 0 r F ~ ( x )  = 0 (275b) 

F2(x) = 0 r Fk~(x) = 0 (275C) 

Here, we meet the same results obtained by the first method that are 
given by equations (257a)-(257c) [see also equations (264)]. 

This shows the importance of the introduction of the notion of origin 
of the affine space of connections on the module, i.e., the canonical connection 
V0 (see Lemma 3 in Section 7.2). 

One can generalize similarly the U(p)-Yang-Mills action by writing the 
action for a Hermitian connection on the free Herrnitian finite projective A- 
module of rank p. The action has again the form given by equation (263), 
but now the A~ and the Ak are (n p) • (n p) anti-Hermitian matrix-valued. 
Thus, using Theorem 1, there are as many gauge orbits of connections on 
which the action vanishes as there are unitary classes of anti-Hermitian 
representations of su(n) in C" | C p. 

Finally, one can extend these results to the general case of a finite 
projective right C=(R ") | Mn(C)-module, namely C=(R m) | MKn(C ). This 
module is free of rank K-n, so dido(x) is well defined for + E C~(R m) 
MKn(C) (Dubois-Violette, 1990): 

dido(x) = O~qb(x) d l x  ~ (276) 

A connection on this module is of the form 

V(~b) = dl~b - ip~b0 + A~b 

with 

(277a) 

A = A~(x) d t x  ~ + pAk(x)0 k (277b) 
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where the At, and the Ak are K • K-matrix-valued functions on R ' ,  i.e., 
elements of C=(R m) | Mk(C), and where 

A+(x) = At`(x)+(x) dlxt` + pAk(x)c~(x)O k (277c) 

Such a connection is Hermitian if and only if the Ar and the Ak(x) 
are anti-Hermitian, Vx ~ R m. The curvature V z of V is given by 

V2(6) = F~b (278a) 

where 

F = �89 - O~At` + [A~, Av]) dlx ~ A dlx ~ 

+ p(Ot~A k + [A~, Ak]) dlXt` A O k 

+ �89 - I C~Am) Ok A (278b) 

The connection V is flat (i.e., V z = 0) if and only if each term of F 
vanishes, which implies that V is gauge equivalent to a connection for which 
one has 

A ~ = 0  

O~Ak = 0 

and 

(279a) 

(279b) 

(279c) 

[Ak, At] = 1_ C~tAm 
P 

Furthermore, two such connections are equivalent if and only if the 
corresponding representation of su(n) in C ~ (given by the constant K • K 
matrices Ak) are equivalent. So again, the gauge orbits of fiat Hermitian 
connections are in one-to-one correspondence with the unitary classes of 
(anti-Hermitian) representations of su(n) in C ~. 

For instance, for n = 2, the number of  such orbits is again the number of 
partitions of the integer K, exactly as in the case A = M,(C) (see Section 7.2). 

It is clear from equation (278b) that the generalization of  the Euclidean 
Yang-Mills action for a Hermitian connection V [see equation (277a)] on 
C~(R m) | Mr~(C) is 

,f s ( v )  = I l f l l  z = - ~  Zr(0~Av - OvAt` + [e~, Av]) 2 dmx 

1 I Tr(0t'Ak + [At`, Ak]) 2 dmx 2p 2 
. /  

([Ak, Ai] C'knlam)2 1 f Tr - _1 dm x (280) 
4p 4 d P 
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where the metric of the space-time R m is 

g ~  = ~ (281a) 

with the basis { 1, Ek} chosen in such a way that 

K~l = ~l  (281b) 

i.e. [in view of equation (80)], 

Tr(EkEt) = n~kl 

and where the scalar product ( , )  on f~o~r(C~176 ") | Mn(C)) is defined by 
equation (149). 

Let us now discuss the physical interpretation of all these results. The 
action S(V) given by equation (280) is the Yang-Mills action on the noncom- 
mutative space corresponding to the associative algebra A = C~ m) | 
Mn(C). It can be interpreted as the Euclidean action of a field theory on the 
m-dimensional space-time R m. This field theory consists of a U(n)-Yang-Mills 
potential field AN(x) minimally coupled to n 2 - 1 scalar fields Ak(x) with 
values in the adjoint representation of U(n) which interact among themselves 
through a quartic polynomial potential. 

Let n >- 2 and m >- 2. Then the action (280) of  this quantum field theory 
is positive and vanishes for the trivial gauge orbit fl0 defined by 

A~ = 0 and Ak = 0 (282) 

but also vanishes on other gauge orbits that are labeled by unitary classes of 
representations of su(n) in C K. Recall that, for p = 1 [see equation (263)], 
and in addition to ~0, there is only one nontrivial gauge orbit f l l  defined by 

A~ = 0 and A, = i Ek (283) 
P 

In this case, these two gauge orbits, namely ~0 and fl l ,  are separated 
by an infinite potential barrier, i.e., there is no instanton interpolating between 
them. This comes from the translation invariance. 

Therefore, by standard arguments (Itzykson and Zuber (1980)), each of 
these orbits corresponds to a vacuum for the corresponding quantum field 
theory. Le t  us denote these vacua by the same notation, i.e., by l ~ ,  c~ = 0, 
1 . . . .  (for p = 1, ot = 0, 1). 

The dynamics of the theory can be developed around one of these vacua. 
Then, one must choose a vacuum and use the field variables that are adapted 
to this vacuum, i.e., translate the fields in such a way that they must vanish 
up to a gauge transformation on the gauge orbit corresponding to the chosen 
vacuum in order that the zero (vacuum expectation values) of the associated 
translated quantum fields correspond to the vacuum. 
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Thus, the variables A N and Ak are adapted to the vacuum sector 1)0 
corresponding to the trivial representation (282). In this sector, the U(1)- 
and SU(n)-gauge fields A ~ and A~ are massless, whereas the scalar fields Ak 
describing the excitations around Ak = 0 are massive with the same mass: 

n 
m(Ak) = - (284) 

P 

The multiplet Ak contains many scalar fields (Higgs fields), because 

A~(x) = A~ | I + A~(x) | Et 

For p = 1 and for the second vacuum 121, the field variables that are 
adapted to this vacuum are A~ and Bk, with 

Bk = Ak - i Ek = A~ | + (A~(x) - i ~ )  | (285a) 

For the translation 

Ak -'-> Bk r Ark(X) ---> A~(x) - i ~ (285b) 
P 

the Abelian U(1)-gauge field A ~ remains massless, while the SU(n)-gauge 
field A~ acquires a nonzero mass due to the contribution of the quartic term: 

1 
2p 2 Tr([A~, E~][A N, E~]) 

in the traceless part [i.e., the SU(n) part] of the A w 
Then all the components A~ have the same mass: 

(2) 1/2n 
m(AN) -- - -  (286) 

P 

The components A ~ of the Higgs field acquires the mass 

2 
m(A ~ = - (287) 

P 

and finally the Higgs multiplet A~ develops quite a complicated mass spec- 
trum. We shall describe this spectrum in the case n = 2 (see Section 7.3.2). 

In general, for an arbitrary p, the quantum theory possesses many vacua 
12~, t~ ~ {0, 1 . . . . .  N(n, p)}, where the number N(n, p) grows very quickly 
with p for n ~ 2. If one chooses a vacuum 1~,~ corresponding to the 
representation R~ of su(n) [see equation (251c)], the field variables that are 
adapted to this vacuum sector are A~ and B~, with 
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1 
Bp = Ak - -- Rp (288) 

P 

Making this change of variables, one observes that the components A~ 
become massive and that the B~ have different masses. The whole mass 
spectrum depends on eL. This is very analogous to the Higgs mechanism. 

However, the gauge invariance is not broken here, and the noninvariance 
of the mass terms of the A N is compensated by the fact that the gauge 
transformation of the BE becomes inhomogeneous (they are components of 
a connection). 

7.3.2. Simple Models 

From the above subsection, we see that the simplest analog of the 
Euclidean Maxwell theory on a noncommutative space corresponding to the 
associative algebra A = C~176 4) ~) M2(C) contains a U(1)-gauge field A ~ 
an SU(2)-gauge field A~, a scalar triplet A~, and a scalar Higgs multiplet 
(a 3 • 3 matrix of scalar fields) A~ (Kerner, 1990; Dubois-Violette et aL, 
1990b; Dubois-Violette, 1990). 

In this case, there are only two vacua l l  0 and 1) 1 corresponding to the 
two inequivalent representations of su(2) in C2: the trivial one {0} �9 {0} 
and the representation {1/2} corresponding to the spin 1/2 (we will denote 
these two vacua by 1)0 and 1)1/2 respectively). 

For the vacuum 1)0, the variables A~ and Ak are adapted to this vacuum 
and there is not much to say. 

The vacuum 1)1/2 corresponds to the gauge orbit of pure gauge connec- 
tions on the free Hermitian A-module of rank one. The vacuum sector of 
1~1/2 is therefore very natural from the point of view of the underlying 
noncommutative differential geometry. Then, for the vacuum O~/z one has 
to make the translation in the Ak as given by equations (285). 

Let us decompose the expression B/' = A~ - (i/p)~' into its irreducible 
parts as 

B~," = -r3~" + si n + a],' (289a) 

where the first term, with 

1 
,'r = ~ B,'~ (289b) 

represents pure trace, the second term (s~') the traceless symmetric part, and 
the last term (a~,") the traceless antisymmetric part. 
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From the action (280) and using equations (285), one obtains the follow- 
ing mass spectrum: 

The fields B ~ have mass [see equation (287)] 

mo = m(B ~ = 2/p (290a) 

the field -r has mass 

the fields s~' have mass 

and the fields a~ n are massless: 

mT = 2/p (290b) 

ms = 4/p (290c) 

ma --- 0 (290d) 

Notice that, in contrast to the Ak, the B k transform inhomogeneously 
under a gauge transformation and one can fix the gauge by imposing 

aZ' = 0 (291) 

This model with vacuum ~ / 2  is interesting, but not very realistic, since 
the obtained mass spectrum is still quite far from the Weinberg-Salam model 
of electroweak interactions. For instance, in this model one has 

m W ~ m Z 

and there is no mixing between A ~ and A~ as in the standard model. 
Moreover, although this model with flu2 looks a little like the bosonic 

sector for the Weinberg-Salam model with the U(1) • SU(2) group, one 
must identify the U(1)-gauge potential with Tr(A~)L so it is not coupled with 
the other fields, and for instance, there is no Weinberg angle. 

Nevertheless, the bosonic sector of the standard model can be reproduced 
in this model by introducing a more flexible metric tensor whose components 
still commute among themselves. In the case n = 2, this new metric tensor 
may be defined as 

g k l  = ~kl(  ~ -k- hO'3) (292) 

such that the new dimensionless parameter h can be related to the Weinberg 
angle. The symmetry breaking is achieved because now the kinetic part of 
the Higgs field Lagrangian �89 Tr[F~kF ~k] is proportional to 

(V)~A~)(V)~A k'l) + (V~A~)(V~A k'2) + (avA~ k,~ 

+ (VpA3)(V~A k'3) + 2X(OoA~ k'3) (293) 
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Diagonalizing the last three terms is equivalent to the introduction of 
new linear combinations of  components of the gauge field variables: 

W~, = a~ +. iA~ (294a) 

Zr = gA ~ + g'a 3 (294b) 

i.e., to replacing A N = A ~ | 1 + A~ | crk by 

( Z N )  W~ (294c) 
AN = W+ "4N 

where 

A~ = g'A ~ - gA~ (294d) 

represents the photon field. 
Around the vacuum B~" = 0 [i.e., A'k" = (i/p)~'], the gauge bosons 

Wff and Z~ have different masses, whereas AN is massless. 
The quantity 

g 
sin 0w - (g2 + g,2)1/2 (295a) 

is related to h by quite a complicated relation: 

1 _ M2z _ 3k + h 2 
cos20w M 2 1 + 3k 2 (295b) 

with Ihl < 1. We recover a realistic value of 0w for k = 0.181. 
This is for the simple model based on the module C~(R 4) | M2(C) 

with vacuum 121/2. In order to obtain more realistic models, one must look 
at other C~(R 4) | M2(C)-modules. The next simplest right Hermitian C~(R 4) 
| ME(C)-module is C~(R 4) @ M3 2(C) (i.e., K = 3, n = 2). In this case, 
there are three vacua, 120, 121, and 122, corresponding to the three inequivalent 
representations of su(2) in C 2, namely {0} �9 {0} �9 {0}, {1/2} �9 {0}, and 
{ 1 }. We shall denote them by l10, 121/2, and 121, respectively. 

Using the vacuum 12u2, i.e., 

(icrk i )  
121/2 ~ (296a) 

\0 0 
one obtains a model close to the standard model in the bosonic sector by 
identifying appropriately the U(I) part of the U(1) • SU(2) gauge potential 
and by making the field translations corresponding to 121/2: 

(iZk(r~ + i A ~  1 ) 
A = _~/2 = A~dlX ~ (296b) 

\ W l W 2 -2iA o 
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Nevertheless, this model has a defect because it contains too many 
bosonic fields. There is first a massless U(l)-gauge field A ~ which is com- 
pletely decoupled and may be eliminated by introducing a generalization of 
a fiber volume for the module. Hence, one may add a global U(l)-gauge 
field A' = A' | 13x3 which is completely decoupled. Second, there are two 
identical pairs of W -+ fields and two Z fields with 

1 M 2 4 
- (296c) 

cosZ0w M 2 3 

It may be that this can be cured by considering some additional structure 
on the module to be conserved by the connections. It may be also that this 
is not a real defect. 

7.3.3. A Tentative Introduction o f  Spinors 

In the above section, we treated only the bosonic sector. To study the 
fermionic one, we have to define a noncommutative analog of the notion of 
a spinor (Kerner, 1990). This means that we would like to give a generalized 
meaning to the analog of Dirac's equation: 

D~ = i',/~V~t~ = 0 (297) 

In order to give an appropriate noncommutative generalization of a 
spinorial field t~, one has to define an A-module for which the Leibnitz rule 
holds [see equation (212b)]: 

V(t~a) = (V(t~))a + dj | da (298a) 

with t~ belonging to the module that would generalize the module of sections 
of spinorial bundles in ordinary differential geometry, a E A, and the exterior 
differential d acting on the algebra A. 

For instance, consider the case A = C ~ ( R  4) ~ Mn(C). We should 
construct the generators of the Clifford algebra corresponding to the metric 
G [see equation (146)]: 

G = g ~  d l x  ~ A d l x  v + pZK~t0~ ̂  0 t 

with Ix, v = 0, 1, 2, 3 and k, l = 1, 2 . . . . .  n 2 - 1, i.e., construct the ~/- 
matrices "y~ and ~k satisfying the relations 

V ~  = 0 (298b) 

and, (298c) 

v~(~-y,.~,) = (V~(~))~mq, + ~/~ 
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Because t~O should belong to A, it seems natural to define the deriva- 
tion as 

and 

so that 

with 

OkO = - - i~Ek (298d) 

Ok-~ = iEk~ (298e) 

Ok(-~t~) = iEk~t~ -- i - ~ E k  = [iEk,-~t~] 

= ad(iEk)(-~t~) = ek(~t~) (298f) 

Then, the covariant derivative should be generalized as follows: 

1 
V k = O k + "~ C~trn 'y  I (298g) 

The minimal module M satisfying all these relations is the following: 

t~ ~ M = C 2N | C~(R 4) ~ C n (299) 

N = [  4 + n 2 - 1  ] 
2 (300) 

and n --> 2. 
In such a space, one can act with the ~/-matrices and with the Ek-matrices 

which commute with ",/-matrices. In general, one may choose Dirac's 4n • 
4n matrices % with a = (ix, k), ix = 0, 1, 2, 3, and k = 1, 2 . . . . .  n 2 - 1, 
in the following way: 

where ",/~ are the usual 4-dimensional Dirac matrices and { 1, Ek} is the basis 
of M,(C). The simplest module that can be considered is of course 

C~(R 4) (~ M 3 2(C) = C 23 (~ C~(R 4) • C 2 (301b) 

where the ~a are defined as in (301a), with 1 being the 2 X 2 unit matrix 
and the Ek being the Pauli matrices ~rk [see equation (119)]. 

The minimal coupling with the gauge fields is ensured by replacing the 
covariant derivative Vk by a gauge- invar ian t  one D~ given by 

i E Dk = gOk + ~ g k + d?k (302) 
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where g is the overall scale factor, qbk is a scalar field (Higgs field) representing 
the noncommutative part of the gauge potential [see equations (285)] 

A ~ = A  ~ 1 7 4  qbk=A ~ 1 7 4  + A ~ |  (303a) 

B k =  B ~ 1 7 4  1 + B t | Et (303b) 

B ~ = A ~ (303c) 

B~ = A~ - / 8~ (303d) 
P 

and Ek is given by 

i 
Ek = ~ crk (304) 

4 ~  

At the symmetry-breakdown minimum, B t = 0, the Dirac equation reads 

Dt~ = i'yaDat~ = [i(~/~ | 1)V~]t~ + [i(~/5 | Ek)Dk]~ 

-- i~l~V~t~ + i~l~Dkt~ = 0 (305) 

The fermion masses will appear naturally if we find the eigenvalues of 
the internal Dirac operator 

i,lkD~t~ = txgt~ (306) 

It is easy to find eigenfunctions of the form 

= v | ~ | "q (307) 

where v is a 4-component Dirac spinor over the space-time satisfying 

~/Sv = v (308) 

e C 2 and "q ~ M2(C). Then, the action of the internal Dirac operator 
reduces to 

i~lkDkt~ = V | [E~ | (g~lEk + i~k'q) -- �89 | "q] 
= txgv | ~ | "q (309) 

Around the broken symmetry phase, A~ = (i/p)8~, one has 

~k = A~ | Et = i Ek = igEk (310) 
P 

and the eigenvalue equation (309) becomes 

trk~ | [trk, "q]_ + 36 | "q = 21x~ | "q (311) 



Dubois-Violette Noncommutative Differential Geometry 879 

The solutions are found in the following way. If we denote 

' (312a) 

and 

0.+= (0 01), 0"_ (0 ~) (312b) 

then the following combinations are the eigenvectors of the internal Dirac 
operator: 

3 i x = ~ :  r 1 7 4 1 7 4  t l J 2 = v | 1 7 4  (313a) 

7 { ~ 3 = v | 1 7 4  t ~ 4 = v | 1 7 4  +6_ |  (313b) =4: r174174 r174174174 
( , ) 5 {r174 ~+|174 

- - "  ( 1 ) (313c) 
Ix= 4" t ~ 8 = v |  ~ - | 1 7 4  

Notice that the multiplicities 2, 4, and 2 of the three different eigenvalues 
correspond to the decomposition of the total space 

C 23 : C 8 : C 2 | C 2 | C 2 

1 into the irreducible representations of su(2) as ff G -32 G ~-. 
This minimal realization of spinors over the noncommutative geometry 

induced by the associative algebra C~(R 4) | Mz(C) does not lead to the 
proper fermionic multiplets observed and realized in the standard model. The 
major shortcoming remains the absence of zero-mass modes for the fermions, 
as in classical Kaluza-Klein theories. Still, other realizations of noncommuta- 
five spinors may be more adequate. 

8. CONCLUSION 

The Dubois-Violette approach to noncommutative differential geometry 
has been presented in its whole in Sections 2, 4, and 6. Sections 3, 5, and 7 
present applications. 

This approach is based essentially on: 
1. Replacing the commutative associative C-algebra A0 = C=(M) of 

the manifold M by an associative algebra A with unit. 
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2. Replacing the A0-module of sections of a vector fiber bundle E over 
M by a right finite projective A-module. 

3. Replacing the A0-module Der(A0) of derivations of A0 by the algebra 
Der(A) of derivations of A, which is, in general, no longer an A-module. 

4. Replacing the usual graded differential algebra O(M) of differential 
forms on M by the smallest graded differential subalgebra f~Der(A) of the 
Chevalley complex C(Der(A); A), which contains A. 

5. Defining a symplectic structure o~ ~ 122er(A) for A and a generalized 
Poisson bracket which generalize the usual ones on the manifold M. 

6. Defining on the right finite projective A-module a whole theory of 
connections (Hermitian structure, gauge, gauge transformation, connection, 
curvature, etc.), using the Connes formalism and the analogy between the 
A0-module of sections of a vector fiber bundle E over M and abstract moduli. 
This construction led to the introduction of a notion of origin V0 in the affine 
space of connections on the A-module, which plays a crucial role in the 
examples A = M,(C) and A = C~176 | Mn(C) presenting new models of 
field theory. Most of this review is essentially based on the work of Dubois- 
Violette (1988, 1989, 1990); Dubois-Violette et al. (1990a, b), Madore (1988, 
1993a,b), and Kerner (1990). 

It is evident that this approach may be generalized to the case where C 
is replaced by an arbitrary commutative field with vanishing characteristic. 

Moreover, one may also replace, in the general formulation of this 
approach, Der(A) by any Lie subalgebra of Der(A). This approach can also 
be generalized to the case of a A-bimodules instead of right A-modules. 

Furthermore, the example of M~(C) (see Section 3.2) shows that HD~r(A) 
is not a Morita invariant, while, as is now established (see footnote 3), Hour(A) 
is a Morita invariant. To show its link with the cyclic cohomology remains 
an open question. 

In spite of the fact that the derivations of Mn(C) are inner, it is shown 
that one may develop a relatively rich differential geometric structure by 
using lqD~r(Mn(C)) as an algebra of differential forms. 

The case of A = Mn(C) is very interesting because, in addition to its 
simplicity, it is purely noncommutative and corresponds to a typical quantum 
system of spin s = (n - 1)/2. It becomes clear that the quantum mechanics 
of a system with such a spin may be described in the framework of the 
noncommutative differential geometry of Mn(C). 

The symplectic structure introduced on the algebra Mn(C) [or Ao | 
M,(C)] leads to a correspondence of the Poisson bracket of elements of A 
with i/h times their commutator. This represents the simplest realization 
of quantization. 

It is worth noticing here that in quantum mechanics the derivations 
of the Heisenberg algebra Ah are also, in some sense, inner derivations, 
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and that the discussion of Section 5.2 on symplectic structure is clearly 
relevant here. 

In fact, it is shown that the quantum mechanics of spin systems and 
quantum systems of finite numbers of degrees of freedom is included in the 
framework of the generalization of symplectic geometry. 

Furthermore, in the example of M2(C) (see Section 3.2.5), the diagonal- 
ization of the operators A and d + ~ gives discrete and finite eigenvalues 
that are to be compared with the infinite tower of excitations (e.g., Legendre 
polynomials) on a manifold S 2 when it plays the role of the internal space 
in Kaluza-Klein theories. 

Although this approach is canonical and consistent, it presents some 
disadvantages. First, it is a more or less rigid. Second, the fact that Der(A) 
is not an A-module but only a module over the center A0 | 1 of A does not 
allows us to define a noncommutative analog of linear connections. So, in 
general, one cannot use the notion of connection of Section 6.3 for Der(A). 
Third, and for similar reasons, there is not yet a natural and general way to 
introduce the noncommutative analog of spinors. 

Let us also remark that to study noncommutative symplectic geometry 
(see Sections 4 and 5), Dubois-Violette et al. have used explicitly all the 
details of the structure of the graded differential algebra I'~D~r(A), i.e., the 
operation of Der(A) in f~o~r(A). But, to discuss new models of gauge theory, 
they used only the Zz-grading of f~t~r(A) and the existence of the differential 
d. Replacing ~D~r(A) by a more general Zz-graded differential algebra con- 
taining A, one arrives at models of gauge theory similar to those proposed 
by Connes and Lott (1989) and by Coquereaux et aL (1990). 

Finally, for A = C~(M) | Mn(C) (see Sections 7.3.1 and 7.3.2), the 
proposed new models of gauge theory present some similarities with the 
bosonic part of the Weinberg-Salam model of electroweak interactions. The 
variables A~(x) play the role of Higgs fields and the sector ~L is similar to 
the broken phase. One has then U(1) X SU(2) gauge theory and the mechanism 
that produces a mass for the SU(2) part of the gauge field is very similar to 
the Higgs mechanism. 

However, there are some differences. First, there are two stable gauge- 
0 1 

invariant vacua corresponding to the gauge orbits of V and V. Second, since 
the field variables Ak (or B~) are the components of a Hermitian connection, 
they are anti-Hermitian and thus they do not interact with the electromagnetic 
field [i.e., with the U(1) part A ~ of the A~]. Thus, there is nothing here like 
the Weinberg angle and the U(1)-gauge field is completely decoupled. 

From the point of view of perturbation theory in R 4, the gauge theories 
presented here are renormalizable. To carry out the renormalization program, 
one has to use the usual BRS technique. However, the standard BRS invari- 
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ance does not forbid terms like Tr(A 2) with arbitrary coefficients. These would 
break the form of the action S = IIV2112 given by equation (280) and one 
must therefore find an extended BRS or some other invariance that takes 
into account the fact that the action is a functional of a curvature. Another 
open question is to define a theory of spinors in this context. 

Dubois-Violette et al. (1989a, b) gave an informal discussion of these 
models of gauge theory with a presentation of the analog of the scalar field 
for A = C=(R ") | M,(C) and a discussion of the analogies and differences 
with Kaluza-Klein theories. 

Finally, there are other approaches to noncommutative differential calcu- 
lus and its applications (see, for instance, Connes, 1986; Karoubi, 1983; 
Woronowicz, 1987, 1989; Wess and Zumino, 1990; Zumino, 1991, 1992). 
The open questions raised in the Dubois-Violette approach and the link of 
the latter with the other approaches will be treated in a future work. 

APPENDIX. REMARKS ON THE ALGEBRAIC CHARACTER 
OF THE PSEUDODIFFERENTIAL PROCESS 

Let A(C; +; .) be an associative algebra over C and ~s ~ ;  o) be 
the associative algebra of linear operators from A into A (Mourre, 1990). 

Proposition 1. One defines on the vector space A(C; +) a structure of 
associative algebra A(C; +; *) by means of the linear mapping 

such that 

and 

II: A(C; +) --) ~s 

II(a) o I-l(b) = II(II(a)(b)) 

a * b = II(a)(b) 

Va, b e A .  

Definition A1. A derivation D ~ ~(A)  of an algebra A(C; +; -) is a 
linear mapping from A into A such that 

D(a. b) = D(a). b + a.D(b) 

In general, one has the Leibnitz formula 

D(")(a �9 b) = ~, CPnD(P)(a) �9 D(n-p)(b) 
p=O 
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where D(P)(a) means the pth derivation of a and 

p~ 
& . -  

n!(n - p ) !  

Definition A2. Let A be an associative algebra equipped with a family 
of derivations {Di}, i E I = { 1, 2 . . . . .  n} and a norm 

I1"11: A--~ R+ 

A is a complete metric topological algebra if one defines on it a metric 

d(a, b) = d(0, a - b) = p(a - b) 

where 

o(a)=llall+ =~N" ~ (2) '~ 
letl>--I 

IIO"(a)ll 
1 + IIO=(a)ll 

for any a, b ~ A and for any c~ = (al ,  ol-2 . . . . .  O~n) e N n, with 

and 

D ~, = D~l .D~ 2 . . .  D ~  

= 

i=1 

Proposition 2. Let A(C; +; -) be an associative algebra equipped with 
a norm I1"11, {D;};~, be a family of derivations of A that commute, and H a 
linear mapping from A into s such that, for any D1, D2 a (Di), one has 

1 1 
H(a) = a + (Ol(a))Dz + ~.. (OZ(a))O~ + "'" + ~ (D~(a))O~ + . . .  

N 1 
= N~=lim n~__ ~ ~ (DT~(a))D~ 

Let Def(II(a)) be the domain of definition of II(a), i.e., the set of 
elements of A such that the above series converges for the metric topology. 

Then, a subalgebra ,4 of A(C; +; �9 ) exists such that: 
I. A C Def(H(a)), a ~ A, i.e., II(A)(.4) C A. 
2. The law ~ * /~ = II(a)(/~) induces on A a structure of associative 

algebra .4(C; +;  *(Oi,O2)):  

H(a) o H(~) = H(H(a)(~)) 

Moreover, it is clear that D~ and D2 remain derivations for the algebra 
A(C; +;  ~r(Oi,D2)). 
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Proposition 3. Let D be a derivation that commutes with D~ and D 2 
{Di}. Then, D is also a derivation for the algebra A(C; +;  *(Ol,O2)), i.e., 

D(a * b) = D(a) * b + a * D(b) 

Proposition 4. Let A(C; +;  �9 ) be a normed associative algebra and let 
{D]}i~l, {DJz}j~I, / = { 1 . . . . .  n}, be two families of  commuting derivations: 

[D~, D~] = [O~, D~] = [Di, D~] = 0 

Vi, j ~ I = { 1 . . . . .  n}. For any multilabel ct = (cq . . . . .  an) E N n, one has 

~! = oq! ~2! " '" O~n! 

10/-I = ~ O t  i 
i=I 

i=1 j = l  

Let 

1 
II(a)  = ~] ~.1 (DC((a))D~ 

and let ,4 be the vector subspace introduced in Proposition 2; then the law 

*<o~,o2)/~ = II(a)(/~) 

Va, /~ e 1( defines on /~ a structure o f  associative algebra: A(C; + ;  

*w~,o2)). 

Let  now A(C; +;  -) be an associative algebra, {D~}i~t and {D~}j~I, I 
= { 1 . . . . .  n}, be two families of  commuting derivations of  A, and A be the 
vector space introduced in Proposition 2. Let  

A(C; +;  *~.,~;ioi~l,t~D) with v ~ C 

be a family o f  associative algebras defined by 

V n 

I-Iv(a) = ~] ~.~ (D'~l(a))D'~ 
n_>0 

For v = 1, we recover the usual product  introduced above, i.e., 

"k'(.;1;{Oi},{DJ2} ) -~- ~r 1 ~ "k({Di},{O~} ) 

for any two families {Di }i~, {D~}j~1 of  commuting derivations. 
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Proposition 5. Consider the algebra obtained by the deformation 

A(C; +; *') 

such that 

Then 

"k ' : "&(.v;v,;{Di },lDJ2} ) 

= *(.(.;v;{Di},{Dd2});v,;{Di },{DJ2}) 

* '  -~" *v+v '  : *(';v+u';{Di},{D~}) 

i.e., the following diagram commutes: 

A(C;+; ') > A(C;+;*v) 

~A(C;!;*~') 
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